Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hepatology ; 70(4): 1262-1279, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30991448

RESUMEN

Histone deacetylase 6 (HDAC6) uniquely serves as a tumor suppressor in hepatocellular carcinogenesis, but the underlying mechanisms leading to tumor suppression are not fully understood. To identify comprehensive microRNAs (miRNAs) regulated by HDAC6 in hepatocellular carcinogenesis, differential miRNA expression analysis of HDAC6-transfected Hep3B cells was performed. Using integrative analyses of publicly available transcriptome data and miRNA target prediction, we selected five candidate miRNAs and, through in vitro functional validation, showed that let-7i-5p specifically suppressed thrombospondin-1 (TSP1) in hepatocellular carcinoma (HCC). Ectopic expression of antisense let-7i-5p (AS-let-7i-5p) inhibited in vitro tumorigenesis of HCC cells. In addition, treatments of partially purified TSP1 from culture cell media (ppTSP1) and recombinant TSP1 (rTSP1) exhibited similar effects with AS-let-7i-5p treatment on the same HCC cells, whereas TSP1 neutralizing antibody treatment significantly attenuated these effects. Notably, treatments of HDAC6 plasmid, AS-let-7i-5p, ppTSP1, and rTSP1 significantly suppressed in vitro angiogenesis and metastatic potential of HCC cells, but the co-treatment of TSP1 antibody specific to cluster of differentiation 47 (CD47) binding domain successfully blocked these effects in the same cells. Furthermore, we demonstrated that recovery of HDAC6 elicited let-7i-5p suppression to de-repress TSP1 expression; therefore, it occupied the CD47 receptor to block CD47-SIRPα-mediated anti-phagocytosis of macrophage in HCC. We also observed that HCC-derived exosomal let-7i-5p suppressed TSP1 of recipient hepatocyte cells. Treatments of HDAC6 plasmid, AS-let-7i-5p, and rTSP1 suppressed tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. Conclusion: Our findings suggest that the HDAC6-let-7i-5p-TSP1 regulatory pathway suppresses neoplastic and antiphagocytic behaviors of HCC by interacting with cell surface receptor CD47 in HCC and neighboring cells of tumor microenvironment, providing a therapeutic target for the treatment of liver malignancy and metastasis.


Asunto(s)
Antígeno CD47/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica/genética , Histona Desacetilasa 6/genética , Neoplasias Hepáticas/genética , Trombospondina 1/metabolismo , Análisis de Varianza , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Fagocitosis/genética , Distribución Aleatoria , Microambiente Tumoral/genética
2.
Exp Mol Med ; 55(1): 95-107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599932

RESUMEN

Aberrant adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on double-stranded RNA (ADAR), has been implicated in various cancers, but the mechanisms by which microRNA (miRNA) editing contributes to cancer development are largely unknown. Our multistage hepatocellular carcinogenesis transcriptome data analyses, together with publicly available data, indicated that ADAR1 was the most profoundly dysregulated gene among RNA-editing enzyme family members in liver cancer. Targeted inactivation of ADAR1 inhibited the in vitro tumorigenesis of liver cancer cells. An integrative computational analyses of RNA-edited hotspots and the known editing frequency of miRNAs suggested that the miRNA miR-3144-3p was edited by ADAR1 during liver cancer progression. Specifically, ADAR1 promoted A-to-I editing of canonical miR-3144-3p to replace the adenosine at Position 3 in the seed region with a guanine (ED_miR-3144-3p(3_A < G)) in liver cancer cells. We then demonstrated that Musashi RNA-binding protein 2 (MSI2) was a specific target of miR-3144-3p and that MSI2 overexpression was due to excessive ADAR1-dependent over-editing of canonical miR-3144-3p in liver cancer. In addition, target prediction analyses and validation experiments identified solute carrier family 38 member 4 (SLC38A4) as a specific gene target of ED_miR-3144-3p(3_A < G). The ectopic expression of both ADAR1 and the ED_miR-3144-3p(3_A < G) mimic enhanced mitotic activities, and ADAR1 suppressed SLC38A4 expression in liver cancer cells. Treatments with mouse-specific ADAR1-, MSI2-siRNA-, or SLC38A4-expressing plasmids suppressed tumorigenesis and tumor growth in a mouse model of spontaneous liver cancer. Our findings suggest that the aberrant regulation of ADAR1 augments oncogenic MSI2 effects by excessively editing canonical miR-3144-3p and that the resultant ED_miR-3144-3p(3_A < G) simultaneously suppresses tumor suppressor SLC38A4 expression, contributing to hepatocellular carcinogenesis.


Asunto(s)
Neoplasias Hepáticas , MicroARNs , Animales , Ratones , Adenosina/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo
3.
Gut Liver ; 16(6): 995-1000, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379905

RESUMEN

The clinical course and prognosis of patients with elderly-onset Crohn's disease (CD) remain unclear. This study aimed to analyze the clinical characteristics and outcomes of elderly-onset CD patients from the prospective CONNECT study cohort, a nationwide, multicenter cohort study of patients with CD in Korea. Among a total of 1,175 patients in the prospective CONNECT study cohort, 94 patients (Montreal age A3) were included and divided into two groups according to their age at diagnosis: the elderly-onset group (diagnosed with CD after 60 years of age, n=26, 67.54±6.7 years) and late adult-onset group (diagnosed as CD at age 41 to 59 years, n=68, 48.06±5.1 years). The elderly-onset group was characterized by a lower Crohn's disease activity index at diagnosis (124.89±101.9 vs 189.55±128.6, p=0.023) and higher rates of previous anti-tuberculosis treatment (34.6% vs 4.4%, p<0.001) than the late adult-onset group. Compared with the late adult-onset group, the elderly-onset group showed a significantly less use of thiopurines (p=0.003), as well as anti-tumor necrosis factor-alpha agents (p=0.047). Additionally, the elderly-onset group was less likely to require bowel resection than the late adult-onset group (p=0.067), suggesting that elderly-onset CD patients in Korea appear to have more favorable clinical outcomes than late adult-onset CD patients.


Asunto(s)
Enfermedad de Crohn , Procedimientos Quirúrgicos del Sistema Digestivo , Adulto , Humanos , Anciano , Persona de Mediana Edad , Enfermedad de Crohn/tratamiento farmacológico , Estudios de Cohortes , Estudios Prospectivos , Pronóstico
4.
J Clin Med ; 11(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35456219

RESUMEN

The high morbidity rate of hepatocellular carcinoma (HCC) is mainly linked to late diagnosis. Early diagnosis of this leading cause of mortality is therefore extremely important. We designed a gene selection strategy to identify potential secretory proteins by predicting signal peptide cleavage sites in amino acid sequences derived from transcriptome data of human multistage HCC comprising chronic hepatitis, liver cirrhosis and early and overt HCCs. The gene selection process was validated by the detection of molecules in the serum of HCC patients. From the computational approaches, 10 gene elements were suggested as potent candidate secretory markers for detecting HCC patients. ELISA testing of serum showed that hyaluronan mediated motility receptor (HMMR), neurexophilin 4 (NXPH4), paired like homeodomain 1 (PITX1) and thrombospondin 4 (THBS4) are early-stage HCC diagnostic markers with superior predictive capability in a large cohort of HCC patients. In the assessment of differential diagnostic accuracy, receiver operating characteristic curve analyses showed that HMMR and THBS4 were superior to α-fetoprotein (AFP) in diagnosing HCC, as evidenced by the high area under the curve, sensitivity, specificity, accuracy and other values. In addition, comparative analysis of all four markers and AFP combinations demonstrated that HMMR-PITX1-AFP and HMMR-NXPH4-PITX1 trios were the optimal combinations for reaching 100% accuracy in HCC diagnosis. Serum proteins HMMR, NXPH4, PITX1 and THBS4 can complement measurement of AFP in diagnosing HCC and improve identification of patients with AFP-negative HCC as well as discriminate HCC from non-malignant chronic liver disease.

5.
Oncogene ; 40(28): 4652-4662, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34140644

RESUMEN

SWItch/Sucrose Non-Fermentable (SWI/SNF) is a multiprotein complex essential for the regulation of eukaryotic gene expression. SWI/SNF complex genes are genetically altered in over 20% of human malignancies, but the aberrant regulation of the SWI/SNF subunit genes and subsequent dysfunction caused by abnormal expression of subunit gene in cancer, remain poorly understood. Among the SWI/SNF subunit genes, SMARCA4, SMARCC1, and SMARCA2 were identified to be overexpressed in human hepatocellular carcinoma (HCC). Modulation of SMARCA4, SMARCC1, and SMARCA2 inhibited in vitro tumorigenesis of HCC cells. However, SMARCA4-targeting elicited remarkable inhibition in an in vivo Ras-transgenic mouse HCC model (Ras-Tg), and high expression levels of SMARCA4 significantly associated with poor prognosis in HCC patients. Furthermore, most HCC patients (72-86%) showed SMARCA4 overexpression compared to healthy controls. To identify SMARCA4-specific active enhancers, mapping, and analysis of chromatin state in liver cancer cells were performed. Integrative analysis of SMARCA4-regulated genes and active chromatin enhancers suggested 37 genes that are strongly activated by SMARCA4 in HCC. Through chromatin immunoprecipitation-qPCR and luciferase assays, we demonstrated that SMARCA4 activates Interleukin-1 receptor-associated kinase 1 (IRAK1) expression through IRAK1 active enhancer in HCC. We then showed that transcriptional activation of IRAK1 induces oncoprotein Gankyrin and aldo-keto reductase family 1 member B10 (AKR1B10) in HCC. The regulatory mechanism of the SMARCA4-IRAK1-Gankyrin, AKR1B10 axis was further demonstrated in HCC cells and in vivo Ras-Tg mice. Our results suggest that aberrant overexpression of SMARCA4 causes SWI/SNF to promote IRAK1 enhancer to activate oncoprotein Gankyrin and AKR1B10, thereby contributing to hepatocarcinogenesis.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Oncogenes , Animales , Ratones , Secuencias Reguladoras de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA