Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys D Appl Phys ; 54(29): 294003, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34024940

RESUMEN

Despite advances in intraoperative surgical imaging, reliable discrimination of critical tissue during surgery remains challenging. As a result, decisions with potentially life-changing consequences for patients are still based on the surgeon's subjective visual assessment. Hyperspectral imaging (HSI) provides a promising solution for objective intraoperative tissue characterisation, with the advantages of being non-contact, non-ionising and non-invasive. However, while its potential to aid surgical decision-making has been investigated for a range of applications, to date no real-time intraoperative HSI (iHSI) system has been presented that follows critical design considerations to ensure a satisfactory integration into the surgical workflow. By establishing functional and technical requirements of an intraoperative system for surgery, we present an iHSI system design that allows for real-time wide-field HSI and responsive surgical guidance in a highly constrained operating theatre. Two systems exploiting state-of-the-art industrial HSI cameras, respectively using linescan and snapshot imaging technology, were designed and investigated by performing assessments against established design criteria and ex vivo tissue experiments. Finally, we report the use of our real-time iHSI system in a clinical feasibility case study as part of a spinal fusion surgery. Our results demonstrate seamless integration into existing surgical workflows.

2.
J Biophotonics ; 12(9): e201800455, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30859757

RESUMEN

Multispectral and hyperspectral imaging (HSI) are emerging optical imaging techniques with the potential to transform the way surgery is performed but it is not clear whether current systems are capable of delivering real-time tissue characterization and surgical guidance. We conducted a systematic review of surgical in vivo label-free multispectral and HSI systems that have been assessed intraoperatively in adult patients, published over a 10-year period to May 2018. We analysed 14 studies including 8 different HSI systems. Current in-vivo HSI systems generate an intraoperative tissue oxygenation map or enable tumour detection. Intraoperative tissue oxygenation measurements may help to predict those patients at risk of postoperative complications and in-vivo intraoperative tissue characterization may be performed with high specificity and sensitivity. All systems utilized a line-scanning or wavelength-scanning method but the spectral range and number of spectral bands employed varied significantly between studies and according to the system's clinical aim. The time to acquire a hyperspectral cube dataset ranged between 5 and 30 seconds. No safety concerns were reported in any studies. A small number of studies have demonstrated the capabilities of intraoperative in-vivo label-free HSI but further work is needed to fully integrate it into the current surgical workflow.


Asunto(s)
Neoplasias/diagnóstico , Neoplasias/metabolismo , Imagen Óptica , Consumo de Oxígeno , Oxígeno/metabolismo , Adulto , Humanos , Periodo Intraoperatorio , Neoplasias/patología , Óptica y Fotónica , Control de Calidad , Reproducibilidad de los Resultados , Oncología Quirúrgica , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA