Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pak J Pharm Sci ; 36(5(Special)): 1649-1656, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38008963

RESUMEN

In terms of delivery systems for active compounds, orally disintegrating films are a great option. The initial stage in creating an oral disintegrating film is selecting a film-forming polymer. The basic polymers combination Microcrystalline Cellulose (MCC), which is co-processed with Carboxymethylcellulose Sodium (CMC) and hydroxypropylmethyl cellulose were used to create an oral disintegrating film that contains cholecalciferol (Vitamin D3), a fat-soluble vitamin that aids in the body's absorption of calcium and phosphorus. The goal of the current inquiry was to develop orally disintegrating films of vitamin D3 to improve patient comfort and compliance for pediatric or elderly patients due to its simplicity of administration. Films containing drugs and made of the appropriate plasticizer and chosen polymers demonstrated outstanding film forming and folding endurance. The dissolution test showed that Vitamin D3 has a rapid disintegration property, with the majority of it dissolving in the medium (pH 6.8) in less than two minutes after being inserted. To verify that the films were successfully formed, a variety of procedures including HPLC, FT-IR and microscopic studies were employed. When kept at 40oC with humidity of 75%, the film showed good stability for at least three months.


Asunto(s)
Colecalciferol , Polímeros , Humanos , Niño , Anciano , Espectroscopía Infrarroja por Transformada de Fourier , Solubilidad , Polímeros/química , Derivados de la Hipromelosa/química , Administración Oral
2.
Heliyon ; 10(4): e26494, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420404

RESUMEN

This research presents the design and implementation of a chipless Radio Frequency Identification (RFID) multi-sensor tag on a flexible laminate. Along with the tag's primary function of data encoding for object identification purposes, the tag also incorporates moisture and temperature sensing functionalities within a compact size measuring a mere 15 × 16 mm2. The tag structure comprises of a total 29 resonators, with each resonator corresponding to one bit in the microwave response. The initial design utilized the bendable Rogers RT/duroid®5880 within a frequency band of 5.48-28.87 GHz. To conduct a comprehensive comparative analysis, the tag design is optimized for two distinct substrates including Kapton®HN and PET. The optimization process involves exploring the utilization of both silver nanoparticle-based ink and Aluminum as radiators. The sensing feature was incorporated by deploying a thin film of Kapton®HN over the longest slot of the tag which acts as a moisture sensor. Temperature sensing feature was achieved by combining Stanyl® polyamide, a temperature dependent polymer, with Rogers RT/duroid®5880 which served as a fused substrate. The tag showcases a high code density of 12.08 bits/cm2 enabling it to efficiently label 229 unique items. Its unique features include flexibility, miniaturized design, printability, cost-effectiveness and multi sensing property.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA