Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Syst Biol ; 70(6): 1232-1255, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33760075

RESUMEN

Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ${\sim}$2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth-death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.].


Asunto(s)
Helechos , Teorema de Bayes , Evolución Biológica , Helechos/genética , Fósiles , Especiación Genética , Filogenia
2.
Mol Phylogenet Evol ; 127: 87-97, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29783022

RESUMEN

The gymnosperm genus Cycas is the sole member of Cycadaceae, and is the largest genus of extant cycads. There are about 115 accepted Cycas species mainly distributed in the paleotropics. Based on morphology, the genus has been divided into six sections and eight subsections, but this taxonomy has not yet been tested in a molecular phylogenetic framework. Although the monophyly of Cycas is broadly accepted, the intrageneric relationships inferred from previous molecular phylogenetic analyses are unclear due to insufficient sampling or uninformative DNA sequence data. In this study, we reconstructed a phylogeny of Cycas using four chloroplast intergenic spacers and seven low-copy nuclear genes and sampling 90% of extant Cycas species. The maximum likelihood and Bayesian inference phylogenies suggest: (1) matrices of either concatenated cpDNA markers or of concatenated nDNA lack sufficient informative sites to resolve the phylogeny alone, however, the phylogeny from the combined cpDNA-nDNA dataset suggests the genus can be roughly divided into 13 clades and six sections that are in agreement with the current classification of the genus; (2) although with partial support, a clade combining sections Panzhihuaenses + Asiorientales is resolved as the earliest diverging branch; (3) section Stangerioides is not monophyletic because the species resolve as a grade; (4) section Indosinenses is not monophyletic as it includes Cycas macrocarpa and C. pranburiensis from section Cycas; (5) section Cycas is the most derived group and its subgroups correspond with geography.


Asunto(s)
Núcleo Celular/genética , Cycas/clasificación , Cycas/genética , Sitios Genéticos , Filogenia , Plastidios/genética , Secuencia de Bases , Teorema de Bayes , ADN de Cloroplastos/genética , ADN de Plantas/genética , Bases de Datos Genéticas
3.
BMC Evol Biol ; 15: 65, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25884423

RESUMEN

BACKGROUND: Bayesian relaxed-clock dating has significantly influenced our understanding of the timeline of biotic evolution. This approach requires the use of priors on the branching process, yet little is known about their impact on divergence time estimates. We investigated the effect of branching priors using the iconic cycads. We conducted phylogenetic estimations for 237 cycad species using three genes and two calibration strategies incorporating up to six fossil constraints to (i) test the impact of two different branching process priors on age estimates, (ii) assess which branching prior better fits the data, (iii) investigate branching prior impacts on diversification analyses, and (iv) provide insights into the diversification history of cycads. RESULTS: Using Bayes factors, we compared divergence time estimates and the inferred dynamics of diversification when using Yule versus birth-death priors. Bayes factors were calculated with marginal likelihood estimated with stepping-stone sampling. We found striking differences in age estimates and diversification dynamics depending on prior choice. Dating with the Yule prior suggested that extant cycad genera diversified in the Paleogene and with two diversification rate shifts. In contrast, dating with the birth-death prior yielded Neogene diversifications, and four rate shifts, one for each of the four richest genera. Nonetheless, dating with the two priors provided similar age estimates for the divergence of cycads from Ginkgo (Carboniferous) and their crown age (Permian). Of these, Bayes factors clearly supported the birth-death prior. CONCLUSIONS: These results suggest the choice of the branching process prior can have a drastic influence on our understanding of evolutionary radiations. Therefore, all dating analyses must involve a model selection process using Bayes factors to select between a Yule or birth-death prior, in particular on ancient clades with a potential pattern of high extinction. We also provide new insights into the history of cycad diversification because we found (i) periods of extinction along the long branches of the genera consistent with fossil data, and (ii) high diversification rates within the Miocene genus radiations.


Asunto(s)
Cycadopsida/clasificación , Cycadopsida/genética , Teorema de Bayes , Evolución Biológica , Cycadopsida/anatomía & histología , Fósiles , Filogenia , Raíces de Plantas/anatomía & histología
4.
Proc Natl Acad Sci U S A ; 107(43): 18724-8, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20921408

RESUMEN

Dated molecular phylogenies are the basis for understanding species diversity and for linking changes in rates of diversification with historical events such as restructuring in developmental pathways, genome doubling, or dispersal onto a new continent. Valid fossil calibration points are essential to the accurate estimation of divergence dates, but for many groups of flowering plants fossil evidence is unavailable or limited. Arabidopsis thaliana, the primary genetic model in plant biology and the first plant to have its entire genome sequenced, belongs to one such group, the plant family Brassicaceae. Thus, the timing of A. thaliana evolution and the history of its genome have been controversial. We bring previously overlooked fossil evidence to bear on these questions and find the split between A. thaliana and Arabidopsis lyrata occurred about 13 Mya, and that the split between Arabidopsis and the Brassica complex (broccoli, cabbage, canola) occurred about 43 Mya. These estimates, which are two- to threefold older than previous estimates, indicate that gene, genomic, and developmental evolution occurred much more slowly than previously hypothesized and that Arabidopsis evolved during a period of warming rather than of cooling. We detected a 2- to 10-fold shift in species diversification rates on the branch uniting Brassicaceae with its sister families. The timing of this shift suggests a possible impact of the Cretaceous-Paleogene mass extinction on their radiation and that Brassicales codiversified with pierid butterflies that specialize on mustard-oil-producing plants.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Fósiles , Filogenia , Arabidopsis/anatomía & histología , Teorema de Bayes , Brassicaceae/anatomía & histología , Brassicaceae/clasificación , Brassicaceae/genética , Especiación Genética , Modelos Genéticos , Factores de Tiempo
5.
Appl Plant Sci ; 11(3): e11525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342169

RESUMEN

Premise: Plants with stiff, leathery leaves pose a challenge for standard DNA extraction protocols. These tissues are recalcitrant to mechanical disruption via TissueLyser (or analogous devices) and are often high in secondary metabolites. These compounding factors result in low yields, which may be sufficient for PCR amplification but are generally inadequate for genomic applications that require large quantities of high-quality DNA. Cycads in the genus Encephalartos exemplify these challenges, as this group of plants is fortified for life in harsh, dry habitats with notoriously thick and rigid leaves. Methods and Results: Using a DNA extraction kit, we tested three methods of mechanical disruption and examined the differences between stored vs. freshly collected samples and mature vs. senescing leaflets. We found that the manual method of pulverizing tissue yields the highest concentrations of DNA, and that both senescing leaflets and leaflet tissue that has been stored for extended periods yield sufficient DNA for genomic analyses. Conclusions: These findings shed light on the feasibility of using senescing leaves and/or tissue that has been stored on silica for long periods of time when attempting to extract large amounts of DNA. We provide here an optimized DNA extraction protocol that can be applied to cycads and other plant groups with tough or rigid leaves.

6.
Appl Plant Sci ; 9(1): e11406, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33552748

RESUMEN

PREMISE: New sequencing technologies facilitate the generation of large-scale molecular data sets for constructing the plant tree of life. We describe a new probe set for target enrichment sequencing to generate nuclear sequence data to build phylogenetic trees with any flagellate land plants, including hornworts, liverworts, mosses, lycophytes, ferns, and all gymnosperms. METHODS: We leveraged existing transcriptome and genome sequence data to design the GoFlag 451 probes, a set of 56,989 probes for target enrichment sequencing of 451 exons that are found in 248 single-copy or low-copy nuclear genes across flagellate plant lineages. RESULTS: Our results indicate that target enrichment using the GoFlag451 probe set can provide large nuclear data sets that can be used to resolve relationships among both distantly and closely related taxa across the flagellate land plants. We also describe the GoFlag 408 probes, an optimized probe set covering 408 of the 451 exons from the GoFlag 451 probe set that is commercialized by RAPiD Genomics. CONCLUSIONS: A target enrichment approach using the new probe set provides a relatively low-cost solution to obtain large-scale nuclear sequence data for inferring phylogenetic relationships across flagellate land plants.

7.
Mol Ecol Resour ; 19(6): 1610-1622, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31484214

RESUMEN

Full genome sequencing of organisms with large and complex genomes is intractable and cost ineffective under most research budgets. Cycads (Cycadales) represent one of the oldest lineages of the extant seed plants and, partly due to their age, have incredibly large genomes up to ~60 Gbp. Restriction site-associated DNA sequencing (RADseq) offers an approach to find genome-wide informative markers and has proven to be effective with both model and nonmodel organisms. We tested the application of RADseq using ezRAD across all 10 genera of the Cycadales including an example data set of Cycas calcicola representing 72 samples from natural populations. Using previously available plastid and mitochondrial genomes as references, reads were mapped recovering plastid and mitochondrial genome regions and nuclear markers for all of the genera. De novo assembly generated up to 138,407 high-depth clusters and up to 1,705 phylogenetically informative loci for the genera, and 4,421 loci for the example assembly of C. calcicola. The number of loci recovered by de novo assembly was lower than previous RADseq studies, yet still sufficient for downstream analysis. However, the number of markers could be increased by relaxing our assembly parameters, especially for the C. calcicola data set. Our results demonstrate the successful application of RADseq across the Cycadales to generate a large number of markers for all genomic compartments, despite the large number of plastids present in a typical plant cell. Our modified protocol was adapted to be applied to cycads and other organisms with large genomes to yield many informative genome-wide markers.


Asunto(s)
Cycas/genética , Genoma de Planta/genética , Análisis de Secuencia de ADN/métodos , Marcadores Genéticos/genética , Genoma Mitocondrial/genética , Genómica/métodos , Filogenia
8.
Front Genet ; 6: 132, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926846

RESUMEN

Because ferns have a wide range of habitat preferences and are widely distributed, they are an ideal group for understanding how diversity is distributed. Here we examine fern diversity on a broad-scale using standard and corrected richness measures as well as phylogenetic indices; in addition we determine the environmental predictors of each diversity metric. Using the combined records of Australian herbaria, a dataset of over 60,000 records was obtained for 89 genera to infer richness. A molecular phylogeny of all the genera was constructed and combined with the herbarium records to obtain phylogenetic diversity patterns. A hotspot of both taxic and phylogenetic diversity occurs in the Wet Tropics of northeastern Australia. Although considerable diversity is distributed along the eastern coast, some important regions of diversity are identified only after sample-standardization of richness and through the phylogenetic metric. Of all of the metrics, annual precipitation was identified as the most explanatory variable, in part, in agreement with global and regional fern studies. However, precipitation was combined with a different variable for each different metric. For corrected richness, precipitation was combined with temperature seasonality, while correlation of phylogenetic diversity to precipitation plus radiation indicated support for the species-energy hypothesis. Significantly high and significantly low phylogenetic diversity were found in geographically separate areas. These separate areas correlated with different climatic conditions such as seasonality in precipitation. The phylogenetic metrics identified additional areas of significant diversity, some of which have not been revealed using traditional taxonomic analyses, suggesting that different ecological and evolutionary processes have operated over the continent. Our study demonstrates that it is possible and vital to incorporate evolutionary metrics when inferring biodiversity hotspots from large compilations of data.

9.
PLoS One ; 9(3): e92558, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658356

RESUMEN

The largest digitized dataset of land plant distributions in Australia assembled to date (750,741 georeferenced herbarium records; 6,043 species) was used to partition the Australian continent into phytogeographical regions. We used a set of six widely distributed vascular plant groups and three non-vascular plant groups which together occur in a variety of landscapes/habitats across Australia. Phytogeographical regions were identified using quantitative analyses of species turnover, the rate of change in species composition between sites, calculated as Simpson's beta. We propose six major phytogeographical regions for Australia: Northern, Northern Desert, Eremaean, Eastern Queensland, Euronotian and South-Western. Our new phytogeographical regions show a spatial agreement of 65% with respect to previously defined phytogeographical regions of Australia. We also confirm that these new regions are in general agreement with the biomes of Australia and other contemporary biogeographical classifications. To assess the meaningfulness of the proposed phytogeographical regions, we evaluated how they relate to broad scale environmental gradients. Physiographic factors such as geology do not have a strong correspondence with our proposed regions. Instead, we identified climate as the main environmental driver. The use of an unprecedentedly large dataset of multiple plant groups, coupled with an explicit quantitative analysis, makes this study novel and allows an improved historical bioregionalization scheme for Australian plants. Our analyses show that: (1) there is considerable overlap between our results and older biogeographic classifications; (2) phytogeographical regions based on species turnover can be a powerful tool to further partition the landscape into meaningful units; (3) further studies using phylogenetic turnover metrics are needed to test the taxonomic areas.


Asunto(s)
Biodiversidad , Clima , Filogenia , Dispersión de las Plantas , Australia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA