Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Exp Parasitol ; 252: 108584, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37468088

RESUMEN

Currently, livestock owners manage tick infestations using chemicals, but the method is increasingly losing effectiveness as resistant tick populations have established in the field conditions. Thus, to develop effective tick management strategies, monitoring of resistance in most predominant tick species, Rhipicephalus microplus was targeted. The ticks were collected from eleven districts of Madhya Pradesh and one district of Punjab and tested against deltamethrin (DLM), cypermethrin (CYP), coumaphos (CMP), ivermectin (IVM) and fipronil (FIP), through adult immersion and larval packet tests. The field isolates were highly resistant to DLM [Resistance factor (RF) = 3.98-38.84]. Against CYP, resistance was observed in BWN (Barwani; RF = 2.81) and MND (Mandsaur; RF = 3.23) isolates. Surprisingly, most of the isolates were susceptible to CMP (0.34-1.58). Emerging level of resistance against IVM (1.05-4.98) and FIP (0.40-2.18) was also observed in all the isolates. Significantly elevated production of esterases (p < 0.01) was 90% correlated with RF of DLM while no positive correlation between production of monooxygenase and Glutathione S-transferase with RF to DLM was noted. Multiple sequence analysis of S4-5 linker region of the sodium channel gene of all the isolates revealed a point mutation at 190th position (C190A) which is associated with DLM resistance. Treatment of resistant LDH (Ludhiana) isolate with IVM resulted in upregulation of RmABCC2 gene and insignificant upregulation of RmABCC1 and RmABCB10 genes indicating the probability of linking IVM resistance with over-expression of RmABCC2 gene. The possible tick management strategies are discussed.


Asunto(s)
Acaricidas , Piretrinas , Rhipicephalus , Animales , Acaricidas/farmacología , Rhipicephalus/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/farmacología , Resistencia a los Insecticidas/genética , Ivermectina/farmacología , Piretrinas/farmacología
2.
Exp Appl Acarol ; 85(2-4): 355-377, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34766246

RESUMEN

The resistance status against deltamethrin, cypermethrin, coumaphos and ivermectin was assessed of Rhipicephalus microplus from five districts of Uttarakhand, through adult immersion test and larval packet test. The field isolates were highly resistant to deltamethrin (median resistance ratio [RR50] = 9.10-29.13-fold) followed by cypermethrin (2.23-3.55). Surprisingly the isolates were susceptible to coumaphos (0.34-3.17). Emerging resistance against ivermectin (1.55-3.27) was also observed in all the isolates. Elevated levels of esterases (enzyme ratio = 2.93-5.84-fold), glutathione S-transferases (5.10-10.06) and monooxygenases (1.68-4.02) in resistant fields isolates were highly correlated (47.4-86.0%) with the resistant factor (RR50) determined by bioassay. All the isolates except Uttarkashi possess mutation at the 190th position in domain II of the sodium channel gene. As a mitigation strategy an Ageratum conyzoides-based characterized natural formulation was tested against all the isolates and was found effective at the concentration of 10.1-11.5%. The possibility of using the natural formulation for the management of multi-acaricide resistant ticks is discussed.


Asunto(s)
Acaricidas , Piretrinas , Rhipicephalus , Animales , Cumafos , India , Ivermectina , Larva
3.
Trop Anim Health Prod ; 53(5): 460, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542704

RESUMEN

The chemical-based tick management method is gradually losing its clutch due to the establishment of resistant ticks. For development of region-specific tick management strategies, the present study was aimed to evaluate the comparative resistance profile of Rhipicephalus microplus isolates collected from seven districts of Uttar Pradesh, a northern state of India. Comparative analysis of the dose-response data using adult immersion test (AIT) against coumaphos, malathion, deltamethrin, ivermectin, and fipronil revealed that all the isolates were resistant to discriminating concentration of deltamethrin having LC50 of 295.12-436.52 ppm with a resistance ratio of 22.02-32.58. An emerging low level of ivermectin resistance (resistance ratio, RR50 = 1.03-2.26) with LC50 in the range of 22.39-48.98 ppm was found across the isolates. The coumaphos was highly effective against all except Amethi (AMT) isolate. Similarly, malathion was efficacious against most of the isolates except Pratapgarh (PRT) and Sultanpur (SUL) isolates showing LC50 of 5128.61 and 5623.41 ppm, respectively. All the isolates were responsive to fipronil. Comparative detoxifying enzymes profiles revealed a significant correlation between the increased activity of esterase and deltamethrin resistance. The GST activity was 51.2% correlated with RR50 of malathion while esterase activity was significantly correlated (68.9%) with RR50 of coumaphos. No correlation between the ivermectin resistance and enzyme activity was established. Multiple sequence analysis of S4-5 linker region of the sodium channel gene of all the isolates revealed a point mutation at 190th position (C190A) which is associated with deltamethrin resistance. The possible tick management strategies in this part of the country are discussed.


Asunto(s)
Acaricidas , Piretrinas , Rhipicephalus , Acaricidas/farmacología , Animales , Cumafos , India , Resistencia a los Insecticidas , Ivermectina/farmacología , Malatión/farmacología , Nitrilos , Pirazoles , Piretrinas/farmacología
4.
Pestic Biochem Physiol ; 164: 130-139, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284118

RESUMEN

Protocols to determine metabolic resistance in ticks were mainly derived from reports published using mosquitoes and agriculturally important insects without prior standardization. In the present study, biochemical assays were standardized to quantify acaricide metabolizing enzymes in tick homogenates. Three variables viz., age, number of larvae and reaction time were optimized using reference susceptible IVRI-I and deltamethrin resistant IVRI-IV (Resistance Factor = 194) tick strains. The optimum conditions for estimation of general esterases were 10-15 day old 40 larvae with 15 mins reaction time, 15-20 day old 40 larvae with 20 mins reaction time for Glutathione S- transferase, while 10-15 day old 80 larvae with 5 mins reaction time for monooxygenase. The standardized protocols were further validated in multi acaricide resistant strain (IVRI-V) and in nine field isolates having variable resistant factors to different acaricides. In all the nine heterogeneous field isolates, a significant correlation (p < .05) between resistance to synthetic pyrethroids and over-expression of esterases and monooxygenase was noticed. Similarly, esterases and GST activities were significantly correlated with resistance to organophosphates. The details of the assay protocol are explained for adoption in different laboratories.


Asunto(s)
Acaricidas , Piretrinas , Rhipicephalus , Animales , Esterasas , Glutatión Transferasa , Resistencia a los Insecticidas , Larva , Oxigenasas de Función Mixta
5.
Trop Anim Health Prod ; 52(2): 611-618, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31463660

RESUMEN

The isolates of Rhipicephalus microplus collected from Madhya Pradesh (MP), Punjab (PJB) and Uttar Pradesh (UP) states of India were characterized using laboratory standardized adult immersion test (AIT) against macrocyclic lactone (ivermectin), synthetic pyrethroids (cypermethrin and deltamethrin), organophosphates (coumaphos and diazinon) and phenylpyrazole compounds (fipronil). Out of the six isolates tested, five isolates except MTH were resistant to deltamethrin and cypermethrin at level II with RF ranging from 16.4 to 24.02 and 7.05 to 13.2, respectively. In case of organophosphates, coumaphos was less effective showing resistance level II (RF 8.52-11.2) in all the six populations compared with diazinon to which three isolates (MHW, RWA and AGS) were resistant at level II. Except MTH, other five isolates were categorized at level I with RF ranging from 1.53 to 3.02 against ivermectin. The phenylpyrazole compound however was found effective, and none of the isolates could survive at a discriminating concentration. The possible strategy for the management of multi-acaricide-resistant ticks in the surveyed districts was discussed in the present study.


Asunto(s)
Acaricidas , Resistencia a los Insecticidas , Rhipicephalus , Distribución Animal , Animales , India
6.
Exp Appl Acarol ; 75(3): 319-331, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29846851

RESUMEN

The frequently used chemical control method to manage Rhipicephalus microplus is limited by the emergence of resistance populations. Understanding of resistance mechanisms is essential to develop strategy for sustainable management. The present study was focused on working out the molecular mechanisms of resistance against synthetic pyrethroids (SPs) and organophosphates (OPs) in field isolates of R. microplus collected from six districts of Uttar Pradesh, India. Adult immersion test with discriminating concentrations (AIT-DC) was used to determine resistance status of isolates to SPs (deltamethrin, cypermethrin) and OPs (diazinon, coumaphos). All the six isolates were found resistant to SPs with resistance factor (RF) of 2.9-58.6 and to one of the OP compounds, diazinon having RF of 3.5-13.7 but susceptible to coumaphos (RF < 1.4). Three R. microplus genes, viz. para-sodium channel domain II S4-5 linker, carboxylesterase (372 bp) and acetylcholinesterase 2 (1692 bp) were sequenced and compared with respective sequences of reference susceptible IVRI-I, reference OP resistant population (IVRI-III), IVRI-IV and multi-acaricide resistant population (IVRI-V) of R. microplus. A C190A mutation in the domain II S4-5 linker region of sodium channel gene leading to L64I amino acid substitution was detected in all six isolates. The G1120A mutation in the carboxylesterase gene could not be detected in any isolate. Five nucleotide substitutions viz., G138A, G889A, T1090A, C1234T and G1403A were identified in the acetylcholinesterase 2 gene leading to four amino acid substitutions. The findings of the study corroborate the role of mutation in sodium channel and acetylcholinesterase 2 genes in SP and OP resistance in this part of India.


Asunto(s)
Acaricidas/toxicidad , Organofosfatos/toxicidad , Piretrinas/toxicidad , Rhipicephalus/efectos de los fármacos , Acetilcolinesterasa/genética , Animales , Femenino , India , Resistencia a los Insecticidas/genética , Mutación , Piretrinas/síntesis química , Rhipicephalus/enzimología , Rhipicephalus/genética , Canales de Sodio/genética
7.
Pestic Biochem Physiol ; 138: 66-70, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28456306

RESUMEN

The problem of ticks and tick borne diseases is a global threat and growing reports of resistance to commonly used insecticides further aggravated the condition and demands for country specific resistance monitoring tools and possible solutions of the problem. Establishment of standard reference is prerequisite for development of monitoring tools. For studying possible role of different mechanisms involved in development of resistance in Rhipicephalus (Boophilus) microplus population and to develop newer drug to manage the problem of resistance, a deltamethrin exposed and selected tick colony, referred to as IVRI-IV, was characterized using reference susceptible IVRI-I tick line as control. The RF values of IVRI-IV ticks against deltamethrin, cypermethrin and diazinon were determined as 194.0, 26.6, 2.86, respectively, against adults. The esterase enzyme ratios of 2.60 and 5.83 was observed using α-naphthyl and ß-naphthyl acetate while glutathione S-transferase (GST) ratio was 3.77. Comparative analysis of IVRI-I and IVRI-IV carboxylesterase gene sequences revealed 13 synonymous and 5 non synonymous mutations, reported for the first time. The C190A mutation in the domain II S4-5 linker region of sodium channel gene leading to leucine to isoleucine (L64I) amino acid substitution was also detected in the IVRI-IV population. In the present study, monitorable indicators for the maintenance of the reference IVRI-IV colony, the first established deltamethrin and cypermethrin resistant tick line of India, were identified.


Asunto(s)
Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Rhipicephalus/efectos de los fármacos , Animales , Resistencia a los Insecticidas
8.
Exp Appl Acarol ; 69(2): 239-48, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26979585

RESUMEN

Monitoring of acaricide resistance is considered as one of the important facets of integrated tick management. In an attempt of development of resistance monitoring indicators, in the present study two reference tick lines of Rhipicephalus (Boophilus) microplus maintained in the Entomology laboratory, Indian Veterinary Research Institute (IVRI), Izatnagar, India, were studied to determine the possible contributing factors involved in development of resistance to deltamethrin. Electrophoretic profiling of esterase enzymes detected high activities of EST-1 in reference resistant tick colony designated as IVRI-IV whereas it was not detectable in reference susceptible IVRI-I line of R. (B.) microplus. Esterases were further characterized as carboxylesterase or acetylcholinesterase based on inhibitor study using PMSF, eserine sulphate, malathion, TPP and copper sulphate. It was concluded that an acetylcholinesterase, EST-1, possibly plays an important role for development of deltamethrin resistance in IVRI-IV colony of R. (B.) microplus.


Asunto(s)
Acaricidas/farmacología , Proteínas de Artrópodos/metabolismo , Resistencia a Medicamentos , Esterasas/metabolismo , Nitrilos/farmacología , Piretrinas/farmacología , Rhipicephalus/efectos de los fármacos , Animales , India , Larva/efectos de los fármacos , Larva/enzimología , Larva/crecimiento & desarrollo , Larva/fisiología , Rhipicephalus/enzimología , Rhipicephalus/crecimiento & desarrollo , Rhipicephalus/fisiología
9.
J Vector Borne Dis ; 51(4): 259-70, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25540956

RESUMEN

Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.


Asunto(s)
Insectos Vectores , Control de Ácaros y Garrapatas/métodos , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/prevención & control , Garrapatas/crecimiento & desarrollo , Animales , Humanos , India/epidemiología , Enfermedades por Picaduras de Garrapatas/transmisión , Garrapatas/microbiología , Garrapatas/parasitología , Garrapatas/virología
10.
Pathogens ; 13(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921813

RESUMEN

Rhipicephalus microplus poses a substantial threat to livestock health and agricultural economies worldwide. Its remarkable adaptability to diverse environments and hosts is a testament to its extensive genetic diversity. This review delves into the genetic diversity of R. microplus, employing three pivotal genetic markers: the cytochrome c oxidase I (COX1) gene, ribosomal genes, and microsatellites. The COX1 gene, a crucial tool for genetic characterization and phylogenetic clustering, provides insights into the adaptability of ticks. Ribosomal genes, such as internal transcribed spacer regions (ITS-1 and2) as well as 18S and 28S, are routinely utilized for species differentiation. However, their use is limited due to indels (insertions and deletions). Microsatellites and minisatellites, known for their high polymorphism, have been successfully employed to study populations and genetic diversity across various tick species. Despite their effectiveness, challenges such as null alleles and marker variations warrant careful consideration. Bm86, a well-studied vaccine candidate, exhibits substantial genetic diversity. This diversity directly influences vaccine efficacy, posing challenges for developing a universally effective Bm86-based vaccine. Moreover, the review emphasizes the prevalence of genes associated with synthetic pyrethroid resistance. Identifying single nucleotide polymorphisms in the acaricide-resistant genes of R. microplus has facilitated the development of molecular markers for detecting and monitoring resistance against synthetic pyrethroids. However, mutations in sodium channels, the target site for synthetic pyrethroid, correlate well with the resistance status of R. microplus, which is not the case with other acaricide target genes. This study underscores the importance of understanding genetic diversity in developing effective tick management strategies. The choice of genetic marker should be tailored based on the level of taxonomic resolution and the group of ticks under investigation. A holistic approach combining multiple markers and integrating additional molecular and morphological data may offer a more comprehensive understanding of tick diversity and relationships. This research has far-reaching implications in formulating breeding programs and the development of vaccine against ticks and tick-borne diseases (TTBDs) as well as strategies for the management of resistant ticks.

11.
Parasitol Res ; 112(10): 3561-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23873619

RESUMEN

Th1 and Th2 cytokine gene expression in buffalo calves during primary infection with Fasciola gigantica as well as in response to immunization with the parasite recombinant fatty acid binding protein (rFABP) and recombinant glutathione S-transferase (rGST) proteins was measured at 14th week of infection by real-time PCR with the double-stranded DNA-binding dye SYBR Green. Experimental animals were randomly distributed into FABP, GST, cocktail, challenge and healthy groups. Animals in groups FABP and GST were immunized with 400 µg rFABP and rGST, respectively, and cocktail group with a mixture of 400 µg each of rFABP and rGST in the neck and thigh muscles. All animals received three immunizations at 3-week interval. Calves were challenged per os with 400 viable metacercariae along with the unimmunized challenge control group 1 month after the last immunization. Expression of various cytokines in response to the immunization and parasite primary infection was measured by real-time PCR. Expression of IL-2 (4.5-fold) and IFN-γ (3.2-fold), followed by IL-6 (1.7-fold) and IL-4 (1.6-fold), with downregulation of TNF-α and IL-10 was observed in response to F. gigantica infection in these animals. However, there was a sharp increase in the expression of the IL-4 (211.93 and 111.81-fold) and IL-6 mRNA (219.22 and 48.29-fold) to GST and FABP immunizations, respectively. A downregulation of the IL-1α, a Th1 cytokine in response to FABP and GST immunization in these calves, was also observed. Overall, a mixed type of Th1 and Th2 cytokine environment was evoked to chronic F. gigantica infection and immunization with the above two recombinant proteins in buffaloes.


Asunto(s)
Citocinas/metabolismo , Fasciola/genética , Fascioliasis/veterinaria , Regulación de la Expresión Génica/inmunología , Vacunas/inmunología , Animales , Anticuerpos Antihelmínticos/sangre , Búfalos , Citocinas/clasificación , Citocinas/genética , Fascioliasis/metabolismo , Fascioliasis/prevención & control , Proteínas del Helminto/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
12.
Pathogens ; 12(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986356

RESUMEN

The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6-99.8%, 98.7-99.6%, and 98.9-99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.

13.
Vaccines (Basel) ; 11(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37897004

RESUMEN

SARS-CoV-2 spike protein is an essential component of numerous protein-based vaccines for COVID-19. The receptor-binding domain of this spike protein is a promising antigen with ease of expression in microbial hosts and scalability at comparatively low production costs. This study describes the production, purification, and characterization of RBD of SARS-CoV-2 protein, which is currently in clinical trials, from a commercialization perspective. The protein was expressed in Pichia pastoris in a large-scale bioreactor of 1200 L capacity. Protein capture and purification are conducted through mixed-mode chromatography followed by hydrophobic interaction chromatography. This two-step purification process produced RBD with an overall productivity of ~21 mg/L at >99% purity. The protein's primary, secondary, and tertiary structures were also verified using LCMS-based peptide mapping, circular dichroism, and fluorescence spectroscopy, respectively. The glycoprotein was further characterized for quality attributes such as glycosylation, molecular weight, purity, di-sulfide bonding, etc. Through structural analysis, it was confirmed that the product maintained a consistent quality across different batches during the large-scale production process. The binding capacity of RBD of spike protein was also assessed using human angiotensin-converting enzyme 2 receptor. A low binding constant range of KD values, ranging between 3.63 × 10-8 to 6.67 × 10-8, demonstrated a high affinity for the ACE2 receptor, revealing this protein as a promising candidate to prevent the entry of COVID-19 virus.

14.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36610932

RESUMEN

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Epítopos/genética , SARS-CoV-2/genética , COVID-19/prevención & control , Sueroterapia para COVID-19 , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ratones Transgénicos
15.
Ticks Tick Borne Dis ; 13(6): 102031, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36115182

RESUMEN

Fipronil and amitraz are potentially toxic compounds used for controlling ticks infesting pet and livestock. The use of fipronil on large animals was limited because of its high costs while amitraz is still persisting in the market since its introduction over four decades ago. Though resistance in ticks against these pesticides has been reported worldwide since 2000, the toxicity of these chemicals at cellular level in ticks is still poorly understood. The present study aimed to examine the gross and cellular impact of fipronil and amitraz on the gut, ovaries and synganglion of engorged Rhipicephalus microplus females. Fipronil and amitraz treated tick groups showed formation of a large number of vacuoles of different size throughout the cytoplasm of generative cells whereas sessile, residual and detached digestive cells were very low in numbers. The treatment of ticks resulted in the formation of vacuolations at periphery of all oocytes. Ultra-thin sections of the synganglion revealed severe rupture of neural lamella and perineurium with apoptosis of neural cells after fipronil treatment whereas in the amitraz treated ticks, severe destruction of neuropile region and extensive vacuolation of type I and II cells of cortical region as compared to the unexposed ticks were noted.

16.
mSphere ; 7(4): e0024322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35968964

RESUMEN

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Compuestos de Alumbre , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Emulsiones , Antígenos de Superficie de la Hepatitis B/genética , Humanos , Melfalán , Ratones , Ratones Endogámicos BALB C , Pandemias , ARN Mensajero , ARN Viral , SARS-CoV-2 , Escualeno , Vacunas Sintéticas , Agua , gammaglobulinas , Vacunas de ARNm
17.
Sci Adv ; 8(11): eabl6015, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294244

RESUMEN

Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain-hepatitis B surface antigen virus-like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses.

18.
Ticks Tick Borne Dis ; 12(2): 101610, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33285351

RESUMEN

Cytochrome P450 monooxygenases mediated metabolic detoxification has been recognized as one of the mechanisms involved in resistance to pyrethroids, which is a class of pesticides that includes acaricides such as deltamethrin. Several cytochrome P450 (CYP) genes were identified in arthropod pests which are upregulated in response to exposure to pesticides used as acaricides. However, to date, limited information is available with respect to CYP genes and their response to acaricide exposure in ticks. We cloned and sequenced four CYP genes, the CYP41, CYP3006G8, CYP319A1 and CYP4W1 from reference susceptible IVRI-I strain of Rhipicephalus microplus. The expression pattern of the genes was investigated using qPCR in reference susceptible IVRI-I, pyrethroid-resistant IVRI-IV and multi-acaricide resistant IVRI-V strains. The effect of a single exposure of deltamethrin, at a concentration of 2600 µg/mL and 299.7 µg/mL on IVRI-IV and IVRI-V strains, respectively, on the expression of the four CYP genes was evaluated. In IVRI-IV strain, the CYP41 gene was highly overexpressed (FC 8.72) while CYP3006G8 was underexpressed with FC of 0.06. All the four genes were overexpressed in IVRI-V strain. After exposure to deltamethrin, the CYP3006G8 transcript levels were significantly upregulated at all time intervals in both resistant strains with the highest FC of 11.62 at 12 h in IVRI-IV and 13.38 at 3 h in IVRI-V. Our results suggest that the constitutive overexpression of CYP41 and deltamethrin induced upregulation of CYP3006G8 contribute to the development of pyrethroid resistance, specifically deltamethrin, in these two reference strains.


Asunto(s)
Acaricidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Resistencia a Medicamentos/genética , Nitrilos/farmacología , Piretrinas/farmacología , Rhipicephalus/genética , Animales , Regulación hacia Abajo , Rhipicephalus/efectos de los fármacos , Regulación hacia Arriba
19.
Vaccines (Basel) ; 9(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652549

RESUMEN

The control of cattle tick, Rhipicephalus microplus, is focused on repeated use of acaricides. However, due to growing acaricide resistance and residues problem, immunization of animals along with limited use of effective acaricides is considered a suitable option for the control of tick infestations. To date, more than fifty vaccine candidates have been identified and tested worldwide, but two vaccines were developed using the extensively studied candidate, Bm86. The main reason for limited vaccine commercialization in other countries is genetic diversity in the Bm86 gene leading to considerable variation in vaccine efficacy. India, with 193.46 million cattle population distributed in 28 states and 9 union territories, is suffering from multiple tick infestation dominated by R. microplus. As R. microplus has developed multi-acaricide resistance, an efficacious vaccine may provide a sustainable intervention for tick control. Preliminary experiments revealed that the presently available commercial vaccine based on the BM86 gene is not efficacious against Indian strain. In concert with the principle of reverse vaccinology, genetic polymorphism of the Bm86 gene within Indian isolates of R. microplus was studied. A 578 bp conserved nucleotide sequences of Bm86 from 65 R. microplus isolates collected from 9 Indian states was sequenced and revealed 95.6-99.8% and 93.2-99.5% identity in nucleotides and amino acids sequences, respectively. The identities of nucleotides and deduced amino acids were 94.7-99.8% and 91.8-99.5%, respectively, between full-length sequence (orf) of the Bm86 gene of IVRI-I strain and published sequences of vaccine strains. Six nucleotides deletion were observed in Indian Bm86 sequences. Four B-cell epitopes (D519-K554, H563-Q587, C598-T606, T609-K623), which are present in the conserved region of the IVRI-I Bm86 sequence, were selected. The results confirm that the use of available commercial Bm86 vaccines is not a suitable option against Indian isolates of R. microplus. A country-specific multi-epitope Bm86 vaccine consisting of four specific B-cell epitopes along with candidate molecules, subolesin and tropomyosin in chimeric/co-immunization format may provide a sustainable option for implementation in an integrated tick management system.

20.
Vet Parasitol ; 277: 109011, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31841946

RESUMEN

In the present study, the tick isolates were collected from Assam state, of northeastern region (NER) and characterized using in vitro bioassay, biochemical and molecular assays. Comparing LC50 value of susceptible IVRI-I and larvae of field isolates, revealed that RF against deltamethrin was highest for Morigaon (MGN = 21.8) and lowest for Sonitpur (SNP = 3.3) isolate. The RF against cypermethrin was highest for Nagaon (NGO = 5.0) and lowest for Barpeta (BPT = 1.2) isolate. Against coumaphos, the highest RF of 4.5 was calculated for BPT (4.5) and lowest for NGO (1.3) isolate. While using adults based assay, highest RF of 24.68 against deltamethrin and lowest RF of 4.96 was determined for MGN and SNP isolate, respectively. In contrast to the results obtained using larvae, against cypermethrin, highest RF was recorded for Kamrup Metropolitan (KMP) while it was NGO isolate using larvae. In case of coumaphos, both larvae and adults of BPT isolate were also highly resistant and lowest RF was detected in SNP (2.30) isolate. All the isolates were susceptible to ivermectin. A significant correlation (p < 0.01) between deltamethrin resistance and higher expression of glutathioneS-transferase was observed while no correlation with esterase and monooxygenase enzymes activity was noted. For the development of possible ecofriendly control measure, different accessions of Argemone mexicana and Datura metel plant species were collected, extracted and screened against adult ticks. Two accessions, NEA-03 and NED-06 collected from Amlighat and Diphu (East Karbi Anglong) were more than 90 % effective. Further dose response study of these accessions determined the LC50 values of 4.86 and 3.96 %, respectively.The resistance status of the collected tick isolates was compared with the data generated from other regions having higher livestock population and possibility of exploitation of identified plant species for the development of natural antitick product is discussed.


Asunto(s)
Acaricidas/farmacología , Resistencia a los Insecticidas , Extractos Vegetales/farmacología , Rhipicephalus/efectos de los fármacos , Animales , Bovinos , India , Resistencia a los Insecticidas/efectos de los fármacos , Dosificación Letal Mediana , Estadios del Ciclo de Vida/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA