Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 615(7952): 499-506, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890229

RESUMEN

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Asunto(s)
ADN Mitocondrial , Fumaratos , Inmunidad Innata , Mitocondrias , Animales , Ratones , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Citosol/metabolismo
2.
EMBO J ; 38(15): e100999, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368599

RESUMEN

Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Células COS , Línea Celular , Chlorocebus aethiops , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
3.
EMBO Rep ; 22(3): e49097, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33565245

RESUMEN

Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin-mediated cell death through the FKBP38-dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine-tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin-induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas , Supervivencia Celular , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
J Biol Chem ; 297(2): 100986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298015

RESUMEN

Radial migration during cortical development is required for formation of the six-layered structure of the mammalian cortex. Defective migration of neurons is linked to several developmental disorders such as autism and schizophrenia. A unique swollen structure called the dilation is formed in migrating neurons and is required for movement of the centrosome and nucleus. However, the detailed molecular mechanism by which this dilation forms is unclear. We report that CAMDI, a gene whose deletion is associated with psychiatric behavior, is degraded by cell division cycle protein 20 (Cdc20)-anaphase-promoting complex/cyclosome (APC/C) cell-cycle machinery after centrosome migration into the dilation in mouse brain development. We also show that CAMDI is restabilized in the dilation until the centrosome enters the dilation, at which point it is once again immediately destabilized. CAMDI degradation is carried out by binding to Cdc20-APC/C via the destruction box degron of CAMDI. CAMDI destruction box mutant overexpression inhibits dilation formation and neuronal cell migration via maintaining the stabilized state of CAMDI. These results indicate that CAMDI is a substrate of the Cdc20-APC/C system and that the oscillatory regulation of CAMDI protein correlates with dilation formation for proper cortical migration.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Encéfalo/crecimiento & desarrollo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Trastornos Mentales/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Centrosoma/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Modelos Animales , Neuronas/metabolismo
5.
J Biol Chem ; 296: 100620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811862

RESUMEN

Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.


Asunto(s)
Giro Dentado/patología , GTP Fosfohidrolasas/fisiología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/patología , Prosencéfalo/patología , Agitación Psicomotora/patología , Animales , Giro Dentado/metabolismo , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Agitación Psicomotora/etiología , Agitación Psicomotora/metabolismo
6.
Biochem Biophys Res Commun ; 549: 67-74, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33667711

RESUMEN

Amyloid-ß (Aß) plaques are strongly associated with the development of Alzheimer's disease (AD). However, it remains unclear how morphological differences in Aß plaques determine the pathogenesis of Aß. Here, we categorized Aß plaques into four types based on the macroscopic features of the dense core, and found that the Aß-plaque subtype containing a larger dense core showed the strongest association with neuritic dystrophy. Astrocytes dominantly accumulated toward these expanded/dense-core-containing Aß plaques. Previously, we indicated that deletion of the mitochondrial ubiquitin ligase MITOL/MARCH5 triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aß pathology. In this study, MITOL deficiency accelerated the formation of expanded/dense-core-containing Aß plaques, which showed reduced contacts with astrocytes, but not microglia. Our findings suggest that expanded/dense-core-containing Aß-plaque formation enhanced by the alteration of mitochondrial function robustly contributes to the exacerbation of Aß neuropathology, at least in part, through the reduced contacts between Aß plaques and astrocytes.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/patología , Neurotoxinas/toxicidad , Placa Amiloide/patología , Animales , Astrocitos/efectos de los fármacos , Eliminación de Gen , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuritas/patología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
7.
Mol Cell ; 51(1): 20-34, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23727017

RESUMEN

The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , GTP Fosfohidrolasas/análisis , Células HeLa , Humanos , Proteínas de la Membrana , Ratones , Proteínas Mitocondriales/análisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471110

RESUMEN

The molecular pathology of diseases seen from the mitochondrial axis has become more complex with the progression of research. A variety of factors, including the failure of mitochondrial dynamics and quality control, have made it extremely difficult to narrow down drug discovery targets. We have identified MITOL (mitochondrial ubiquitin ligase: also known as MARCH5) localized on the mitochondrial outer membrane and previously reported that it is an important regulator of mitochondrial dynamics and mitochondrial quality control. In this review, we describe the pathological aspects of MITOL revealed through functional analysis and its potential as a drug discovery target.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Dinámicas Mitocondriales
9.
EMBO Rep ; 17(12): 1785-1798, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27737934

RESUMEN

The DISC1-interacting protein CAMDI has been suggested to promote radial migration through centrosome regulation. However, its physiological relevance is unclear. Here, we report the generation and characterization of CAMDI-deficient mice. CAMDI-deficient mice exhibit delayed radial migration with aberrant neural circuit formation and psychiatric behaviors including hyperactivity, repetitive behavior, and social abnormality typically observed in autism spectrum disorder patients. Analyses of direct targets of CAMDI identify HDAC6 whose α-tubulin deacetylase activity is inhibited by CAMDI at the centrosome. CAMDI deficiency increases HDAC6 activity, leading to unstable centrosomes with reduced γ-tubulin and acetylated α-tubulin levels. Most importantly, psychiatric behaviors as well as delayed migration are significantly rescued by treatment with Tubastatin A, a specific inhibitor of HDAC6. Our findings indicate that HDAC6 hyperactivation by CAMDI deletion causes psychiatric behaviors, at least in part, through delayed radial migration due to impaired centrosomes.


Asunto(s)
Histona Desacetilasas/metabolismo , Trastornos Mentales/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/fisiología , Acetilación , Animales , Trastorno del Espectro Autista/metabolismo , Centrosoma/metabolismo , Centrosoma/patología , Histona Desacetilasa 6 , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Trastornos Mentales/tratamiento farmacológico , Ratones , Proteínas del Tejido Nervioso/genética , Procesamiento Proteico-Postraduccional , Agitación Psicomotora , Tubulina (Proteína)/metabolismo
10.
J Mol Cell Cardiol ; 100: 43-53, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27677939

RESUMEN

A failing heart shows severe energy insufficiency, and it is presumed that this energy shortage plays a critical role in the development of cardiac dysfunction. However, little is known about the mechanisms that cause energy metabolic alterations in the failing heart. Here, we show that the novel RING-finger protein 207 (RNF207), which is specifically expressed in the heart, plays a role in cardiac energy metabolism. Depletion of RNF207 in neonatal rat cardiomyocytes (NRCs) leads to a reduced cellular concentration of adenosine triphosphate (ATP) and mitochondrial dysfunction. Consistent with this result, we observed here that the expression of RNF207 was significantly reduced in mice with common cardiac diseases including heart failure. Intriguingly, proteomic approaches revealed that RNF207 interacts with the voltage-dependent anion channel (VDAC), which is considered to be a key regulator of mitochondria function, as an RNF207-interacting protein. Our findings indicate that RNF207 is involved in ATP production by cardiomyocytes, suggesting that RNF207 plays an important role in the development of heart failure.


Asunto(s)
Metabolismo Energético , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Línea Celular , Expresión Génica , Humanos , Ratones , Mitocondrias Cardíacas/metabolismo , Especificidad de Órganos/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Estrés Fisiológico , Ubiquitinación , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
11.
Eur J Neurosci ; 40(8): 3158-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25074496

RESUMEN

Adequate regulation of synaptic transmission is critical for appropriate neural circuit functioning. Although a number of molecules involved in synaptic neurotransmission have been identified, the molecular mechanisms regulating neurotransmission are not fully understood. Here, we focused on Centaurin gamma1A (CenG1A) and examined its role in synaptic transmission regulation using Drosophila larval neuromuscular junctions. CenG1A is a member of the Centaurin family, which contains Pleckstrin homology, ADP ribosylation factor GTPase-activating protein, and ankyrin repeat domains. Due to the existence of these functional domains, CenG1A is proposed to be involved in the process of synaptic release; however, no evidence for this has been found to date. In this study, we investigated the potential role for CenG1A in the process of synaptic release by performing intracellular recordings in larval muscle cells. We found that neurotransmitter release from presynaptic cells was enhanced in cenG1A mutants. This effect was also observed in larvae with reduced CenG1A function in either presynaptic or postsynaptic cells. In addition, we revealed that suppressing CenG1A function in postsynaptic muscle cells led to an increase in the probability of neurotransmitter release, whereas its suppression in presynaptic neurons led to an increase in neurotransmitter release probability and an increase in the number of synaptic vesicles. These results suggested that CenG1A functions at both presynaptic and postsynaptic sites as a negative regulator of neurotransmitter release. Our study provided evidence for a key role of CenG1A in proper synaptic transmission at neuromuscular junctions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Transmisión Sináptica , Animales , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Activadoras de GTPasa/genética , Larva , Unión Neuromuscular/metabolismo
12.
J Biol Chem ; 286(39): 33879-89, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832068

RESUMEN

We previously demonstrated that CRAM (CRMP5)-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, facilitated degradation of expanded polyglutamine protein (polyQ) via the nuclear ubiquitin-proteasome pathway. Taking advantage of this feature, we also showed that lentivirus-mediated CRAG expression in the Purkinje cells of mice expressing polyQ resulted in clearance of the polyQ aggregates and rescue from ataxia. However, the molecular basis of the function of CRAG in cell survival against polyQ remains unclear. Here we report that CRAG, but not centaurin-γ3, induces transcriptional activation of c-Fos-dependent activator protein-1 (AP-1) via serum response factor (SRF). Mutation analysis indicated that the nuclear localization signal and both the N- and C-terminal regions of CRAG are critical for SRF-dependent c-Fos activation. CRAG knockdown by siRNA or expression of a dominant negative mutant of CRAG significantly attenuated the c-Fos activation triggered by either polyQ or the proteasome inhibitor MG132. Importantly, c-Fos expression partially rescued the enhanced cytotoxicity of CRAG knockdown in polyQ-expressing or MG132-treated cells. Finally, we suggest the possible involvement of CRAG in the sulfiredoxin-mediated antioxidant pathway via AP-1. Taken together, these results demonstrated that CRAG enhances the cell survival signal against the accumulation of unfolded proteins, including polyQ, through not only proteasome activation, but also the activation of c-Fos-dependent AP-1.


Asunto(s)
Ataxia/metabolismo , GTP Fosfohidrolasas/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células de Purkinje/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Ataxia/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Activación Enzimática/genética , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Células de Purkinje/patología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/genética , Factor de Transcripción AP-1/genética
13.
Genes Cells ; 16(2): 190-202, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21143562

RESUMEN

Seven human Sir2 homologues (sirtuin) have been identified to date. In this study, we clarified the mechanism of subcellular localization of two SIRT5 isoforms (i.e., SIRT5(iso1) and SIRT5(iso2) ) encoded by the human SIRT5 gene and whose C-termini slightly differ from each other. Although both isoforms contain cleavable mitochondrial targeting signals at their N-termini, we found that the cleaved SIRT5(iso2) was localized mainly in mitochondria, whereas the cleaved SIRT5(iso1) was localized in both mitochondria and cytoplasm. SIRT5ΔC, which is composed of only the common domain, showed the same mitochondrial localization as that of SIRT5(iso2) . These results suggest that the cytoplasmic localization of cleaved SIRT5(iso1) is dependent on the SIRT5(iso1) -specific C-terminus. Further analysis showed that the C-terminus of SIRT5(iso2) , which is rich in hydrophobic amino acid residues, functions as a mitochondrial membrane insertion signal. In addition, a de novo protein synthesis inhibition experiment using cycloheximide showed that the SIRT5(iso1) -specific C-terminus is necessary for maintaining the stability of SIRT5(iso1) . Moreover, genome sequence analysis from each organism examined indicated that SIRT5(iso2) is a primate-specific isoform. Taken together, these results indicate that human SIRT5 potentially controls various primate-specific functions via two isoforms with different intracellular localizations or stabilities.


Asunto(s)
Mitocondrias/enzimología , Sirtuinas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Primates/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sirtuinas/genética
14.
J Biochem ; 173(1): 1-11, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36346121

RESUMEN

Mitochondria are involved in various cellular processes, such as energy production, inflammatory responses and cell death. Mitochondrial dysfunction is associated with many age-related diseases, including neurological disorders and heart failure. Mitochondrial quality is strictly maintained by mitochondrial dynamics linked to an adequate supply of phospholipids and other substances from the endoplasmic reticulum (ER). The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 is responsible for mitochondrial quality control through the regulation of mitochondrial dynamics, formation of mitochondria-ER contacts and mitophagy. MITOL deficiency has been shown to impair mitochondrial function, cause an excessive inflammatory response and increase vulnerability to stress, resulting in the exacerbation of the disease. In this study, we overview the ubiquitin-mediated regulation of mitochondrial function by MITOL and the relationship between MITOL and diseases.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Muerte Celular , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
15.
J Biochem ; 171(5): 529-541, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34964862

RESUMEN

The transfer of phospholipids from the endoplasmic reticulum (ER) to mitochondria via the mitochondria-ER contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighbouring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labelling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signalling regulates phospholipid transport at the MERCS.


Asunto(s)
Lisina , Proteínas Mitocondriales , Retículo Endoplásmico/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Ácidos Fosfatidicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
iScience ; 25(7): 104582, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789860

RESUMEN

Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.

17.
Commun Biol ; 4(1): 192, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580194

RESUMEN

Mitochondrial pathophysiology is implicated in the development of Alzheimer's disease (AD). An integrative database of gene dysregulation suggests that the mitochondrial ubiquitin ligase MITOL/MARCH5, a fine-tuner of mitochondrial dynamics and functions, is downregulated in patients with AD. Here, we report that the perturbation of mitochondrial dynamics by MITOL deletion triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aß pathology. Notably, MITOL deletion in the brain enhanced the seeding effect of Aß fibrils, but not the spontaneous formation of Aß fibrils and plaques, leading to excessive secondary generation of toxic and dispersible Aß oligomers. Consistent with this, MITOL-deficient mice with Aß etiology exhibited worsening cognitive decline depending on Aß oligomers rather than Aß plaques themselves. Our findings suggest that alteration in mitochondrial morphology might be a key factor in AD due to directing the production of Aß form, oligomers or plaques, responsible for disease development.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Péptidos beta-Amiloides/metabolismo , Encéfalo/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Conducta Animal , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Cognición , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Placa Amiloide , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Ubiquitina-Proteína Ligasas/genética
18.
Science ; 367(6484): 1366-1371, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193326

RESUMEN

Mitochondrial plasticity is a key regulator of cell fate decisions. Mitochondrial division involves Dynamin-related protein-1 (Drp1) oligomerization, which constricts membranes at endoplasmic reticulum (ER) contact sites. The mechanisms driving the final steps of mitochondrial division are still unclear. Here, we found that microdomains of phosphatidylinositol 4-phosphate [PI(4)P] on trans-Golgi network (TGN) vesicles were recruited to mitochondria-ER contact sites and could drive mitochondrial division downstream of Drp1. The loss of the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) or its effector, phosphatidylinositol 4-kinase IIIß [PI(4)KIIIß], in different mammalian cell lines prevented PI(4)P generation and led to a hyperfused and branched mitochondrial network marked with extended mitochondrial constriction sites. Thus, recruitment of TGN-PI(4)P-containing vesicles at mitochondria-ER contact sites may trigger final events leading to mitochondrial scission.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Fosfatos de Fosfatidilinositol/metabolismo , Red trans-Golgi/metabolismo , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Dinaminas/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Células HeLa , Humanos , Microdominios de Membrana , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Interferencia de ARN
19.
J Biochem ; 168(3): 305-312, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302394

RESUMEN

In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism.


Asunto(s)
Enanismo/genética , Enanismo/metabolismo , Proteínas Mitocondriales/genética , Adenohipófisis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Enanismo/tratamiento farmacológico , Técnicas de Silenciamiento del Gen , Hormona del Crecimiento/administración & dosificación , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Prolactina/genética , Prolactina/metabolismo , ARN Mensajero/genética , Ratas , Transducción de Señal/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA