Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Glia ; 69(11): 2575-2590, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34272903

RESUMEN

Hirschsprung disease (HSCR) is characterized by congenital absence of enteric neurons in distal portions of the gut. Although recent studies identified Schwann cell precursors (SCPs) as a novel cellular source of enteric neurons, it is unknown how SCPs contribute to the disease phenotype of HSCR. Using Schwann cell-specific genetic labeling, we investigated SCP-derived neurogenesis in two mouse models of HSCR; Sox10 haploinsufficient mice exhibiting distal colonic aganglionosis and Ednrb knockout mice showing small intestinal aganglionosis. We also examined Ret dependency in SCP-derived neurogenesis using mice displaying intestinal aganglionosis in which Ret expression was conditionally removed in the Schwann cell lineage. SCP-derived neurons were abundant in the transition zone lying between the ganglionated and aganglionic segments, although SCP-derived neurogenesis was scarce in the aganglionic region. In the transition zone, SCPs mainly gave rise to nitrergic neurons that are rarely observed in the SCP-derived neurons under the normal condition. Enhanced SCP-derived neurogenesis was also detected in the transition zone of mice lacking RET expression in the Schwann cell lineage. Increased SCP-derived neurogenesis in the transition zone suggests that reduction in the vagal neural crest-derived enteric neurons promotes SCP-derived neurogenesis. SCPs may adopt a neuronal subtype by responding to changes in the gut environment. Robust SCP-derived neurogenesis can occur in a Ret-independent manner, which suggests that SCPs are a cellular source to compensate for missing enteric neurons in HSCR.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Animales , Sistema Nervioso Entérico/metabolismo , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Neurogénesis/genética , Células de Schwann/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360773

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut-liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Enfermedad del Hígado Graso no Alcohólico , Prebióticos , Probióticos , Animales , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/microbiología , Humanos , Macrófagos del Hígado/inmunología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/microbiología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/microbiología
3.
Lab Invest ; 99(9): 1335-1348, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31019294

RESUMEN

Nonalcoholic steatohepatitis (NASH) is associated with lipotoxic liver injury, leading to insulin resistance, inflammation, and fibrosis. Despite its increased global incidence, very few promising treatments for NASH are available. Pirfenidone is an antifibrotic agent used to treat pulmonary fibrosis; it suppresses the pulmonary influx of T cells and macrophages. Here, we investigated the effect of pirfenidone in a mouse model of lipotoxicity-induced NASH via a high-cholesterol and high-fat diet. After 12 weeks of feeding, pirfenidone administration attenuated excessive hepatic lipid accumulation and peroxidation by reducing the expression of genes related to lipogenesis and fatty acid synthesis and enhancing the expression of those related to fatty acid oxidation. Flow cytometry indicated that pirfenidone reduced the number of total hepatic macrophages, particularly CD11c+CD206-(M1)-type macrophages, increased the number of CD11c-CD206+(M2)-type macrophages, and subsequently reduced T-cell numbers, which helped improve insulin resistance and steatohepatitis. Moreover, pirfenidone downregulated the lipopolysaccharide (LPS)-induced mRNA expression of M1 marker genes and upregulated IL-4-induced M2 marker genes in a dose-dependent manner in RAW264.7 macrophages. Importantly, pirfenidone reversed insulin resistance, hepatic inflammation, and fibrosis in mice with pre-existing NASH. These findings suggest that pirfenidone is a potential candidate for the treatment of NASH.


Asunto(s)
Resistencia a la Insulina/fisiología , Hígado , Macrófagos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Piridonas/farmacología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Células RAW 264.7
4.
IUBMB Life ; 71(4): 516-522, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30592129

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. NAFLD manifests as hepatic lipid accumulation, insulin resistance, and inflammation, and can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis. However, the underlying mechanisms of NAFLD, including those that drive its progression, are unclear. Both liver-resident (Kupffer cells) and recruited macrophages play a crucial role in the development of insulin resistance and NASH. Therefore, NALFD could potentially be ameliorated by modifying the polarization of macrophages/Kupffer cells. Reactive oxygen species induce oxidative stress, which is implicated in the progression of NASH. Micronutrients, including vitamins, are potent antioxidants that exert anti-inflammatory effects, and are used in the treatment of NAFLD. We review here the molecular mechanisms of the pathogenesis of NAFLD and the potential utility of vitamin E in its prevention and/or treatment. © 2018 IUBMB Life, 71(4):516-522, 2019.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Vitamina E/farmacología , Ensayos Clínicos como Asunto , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Micronutrientes/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Estrés Oxidativo , Vitamina E/fisiología
7.
J Neurosci ; 35(27): 9879-88, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26156989

RESUMEN

Elucidation of the cellular identity of neuronal precursors provides mechanistic insights into the development and pathophysiology of the nervous system. In the enteric nervous system (ENS), neurogenesis persists from midgestation to the postnatal period. Cellular mechanism underlying the long-term neurogenesis in the ENS has remained unclear. Using genetic fate mapping in mice, we show here that a subset of Schwann cell precursors (SCPs), which invades the gut alongside the extrinsic nerves, adopts a neuronal fate in the postnatal period and contributes to the ENS. We found SCP-derived neurogenesis in the submucosal region of the small intestine in the absence of vagal neural crest-derived ENS precursors. Under physiological conditions, SCPs comprised up to 20% of enteric neurons in the large intestine and gave rise mainly to restricted neuronal subtypes, calretinin-expressing neurons. Genetic ablation of Ret, the signaling receptor for glial cell line-derived neurotrophic factor, in SCPs caused colonic oligoganglionosis, indicating that SCP-derived neurogenesis is essential to ENS integrity. Identification of Schwann cells as a physiological neurogenic source provides novel insight into the development and disorders of neural crest-derived tissues. SIGNIFICANCE STATEMENT: Elucidating the cellular identity of neuronal precursors provides novel insights into development and function of the nervous system. The enteric nervous system (ENS) is innervated richly by extrinsic nerve fibers, but little is known about the significance of extrinsic innervation to the structural integrity of the ENS. This report reveals that a subset of Schwann cell precursors (SCPs), which invades the gut alongside the extrinsic nerves, adopts a neuronal fate and differentiates into specific neuronal subtypes. SCP-specific ablation of the Ret gene leads to colonic oligoganglionosis, demonstrating a crucial role of SCP-derived neurogenesis in ENS development. Cross-lineage differentiation capacity in SCPs suggests their potential involvement in the development and pathology of a wide variety of neural crest-derived cell types.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Entérico/citología , Neurogénesis/fisiología , Neuronas/fisiología , Células de Schwann/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Sistema Nervioso Entérico/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células de Schwann/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Ubiquitina Tiolesterasa/metabolismo
8.
J Neurosci ; 33(41): 16372-82, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24107967

RESUMEN

Pleiotropic growth factors play a number of critical roles in continuous processes of embryonic development; however, the mechanisms by which a single regulatory factor is able to orchestrate diverse developmental events remain imperfectly understood. In the development of the enteric nervous system (ENS), myenteric ganglia (MGs) form initially, after which the submucosal ganglia (SMGs) develop by radial inward migration of immature ENS precursors from the myenteric layer. Here, we demonstrate that glial cell line-derived neurotrophic factor (GDNF) is essential for the formation not only of the MGs, but the SMGs as well, establishing GDNF as a long-term acting neurotrophic factor for ENS development in a mouse model. GDNF promotes radial migration of SMG precursors. Interestingly, premigratory SMG precursors in the myenteric layer were distinguished from the surrounding neuronally differentiating cells by their lower activation of the GDNF-mediated MAPK pathway, suggesting that low activation of GDNF downstream pathways is required for the maintenance of the immature state. ENS precursors devoid of GDNF signaling during midgestation halt their migration, survive, and remain in an undifferentiated state over the long-term in vivo. Reactivation of GDNF signaling in these dormant precursors restores their migration and neuronal differentiation in gut organ culture. These findings suggest that pleiotropic function of GDNF is at least in part governed by modulating levels of intracellular activation of GDNF downstream pathways; high activation triggers neuronal differentiation, whereas low activation is crucial for the maintenance of progenitor state.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular , Sistema Nervioso Entérico/embriología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células-Madre Neurales/citología , Transducción de Señal/fisiología , Animales , Inmunohistoquímica , Ratones , Ratones Mutantes , Células-Madre Neurales/metabolismo , Neurogénesis
9.
Diabetol Int ; 15(1): 86-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264234

RESUMEN

Genetic and pharmacological activation of the transcription factor nuclear factor, erythroid derived 2, like 2 (Nrf2) alleviates high-fat diet (HFD)-induced obesity in mice; however, synthetic Nrf2 activators are not clinically available due to safety concerns. Dietary glucoraphanin (GR), a naturally occurring compound found in cruciferous vegetables that activates Nrf2 and induces its target antioxidant genes. We previously demonstrated that GR increased thermogenesis and mitigated HFD-induced obesity in lean healthy mice. In this study, we investigated the therapeutic effects of GR on pre-existing obesity and associated metabolic disorders, such as hepatic steatosis, with or without low-fat dietary intervention. Eight-week-old male C57BL/6J mice were fed an HFD for 9 weeks to induce obesity. Subsequently, these obese mice were fed either the HFD or a normal chow diet, supplemented with or without GR, for an additional 11 weeks. GR supplementation did not decrease the body weight of HFD-fed mice; however, it significantly reduced plasma alanine aminotransferase and aspartate aminotransferase levels and hepatic triglyceride accumulation. These improvements in liver damage by GR were associated with decreased expression levels of fatty acid synthesis genes and proinflammatory chemokine genes, suppressed c-Jun N-terminal kinase activation, and reduced proinflammatory phenotypes of macrophages in the liver. Moreover, metabolome analysis identified increased hepatic levels of adenosine 5'-monophosphate (AMP) in HFD-GR mice compared with those in HFD mice, which agreed with increased phosphorylation levels of AMP-activated protein kinase. Our results show that GR may have a therapeutic potential for treating obesity-associated hepatic steatosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13340-023-00658-6.

10.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38862137

RESUMEN

The inhibition of hepatic macrophage and Kupfer cell recruitment and activation is a potential strategy for treating insulin resistance and nonalcoholic steatohepatitis (NASH). Cenicriviroc (CVC), a dual C-C chemokine receptor 2 (CCR2) and CCR5 antagonist, has shown antifibrotic activity in murine models of NASH and has been evaluated in clinical trials on patients with NASH. This study investigated the effects of CVC on macrophage infiltration and polarization in a lipotoxic model of NASH. C57BL/6 mice were fed a high-cholesterol, high-fat (CL) diet or a CL diet containing 0.015% CVC (CL + CVC) for 12 weeks. Macrophage recruitment and activation were assayed by immunohistochemistry and flow cytometry. CVC supplementation attenuated excessive hepatic lipid accumulation and peroxidation and alleviated glucose intolerance and hyperinsulinemia in the mice that were fed the CL diet. Flow cytometry analysis revealed that compared with the CL group, mice fed the CL + CVC diet had fewer M1-like macrophages, more M2-like macrophages, and fewer T cell counts, indicating that CVC caused an M2-dominant shift of macrophages in the liver. Similarly, CVC decreased lipopolysaccharide-stimulated M1-like macrophage activation, whereas it increased interleukin-4-induced M2-type macrophage polarization in vitro. In addition, CVC attenuated hepatic fibrosis by repressing hepatic stellate cell activation. Lastly, CVC reversed insulin resistance as well as steatosis, inflammation, and fibrosis of the liver in mice with pre-existing NASH. In conclusion, CVC prevented and reversed hepatic steatosis, insulin resistance, inflammation, and fibrogenesis in the liver of NASH mice via M2 macrophage polarization.


Asunto(s)
Hígado , Macrófagos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Receptores CCR2/metabolismo , Sulfóxidos/farmacología , Activación de Macrófagos/efectos de los fármacos , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico , Resistencia a la Insulina , Imidazoles
11.
Metabolism ; 136: 155272, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35914622

RESUMEN

BACKGROUND AND OBJECTIVES: Chemokine (C-X3-C motif) ligand 1 (CX3CL1) and its receptor CX3CR1 regulate the migration and activation of immune cells and are involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), but the mechanism remains elusive. Here, the roles of CX3CL1/CX3CR1 in the macrophage migration and polarization in the livers of NASH mice were investigated. METHODS AND RESULTS: The expression of Cx3cl1 and Cx3cr1 was markedly upregulated in the livers of lipotoxicity-induced NASH mice. CX3CR1 was predominantly expressed by F4/80+ macrophages and to a lesser degree by hepatic stellate cells or endothelial cells in the livers of NASH mice. Flow cytometry analysis revealed that, compared with chow-fed mice, NASH mice exhibited a significant increase in CX3CR1+ expression by liver macrophages (LMs), particularly M1 LMs. CX3CR1 deficiency caused a significant increase in inflammatory monocyte/macrophage infiltration and a shift toward M1 dominant macrophages in the liver, thereby exacerbating the progression of NASH. Moreover, transplantation of Cx3cr1-/- bone marrow was sufficient to cause glucose intolerance, inflammation, and fibrosis in the liver. In addition, deletion of CCL2 in Cx3cr1-/- mice alleviated NASH progression by decreasing macrophage infiltration and inducing a shift toward M2 dominant LMs. Importantly, overexpression of CX3CL1 in vivo protected against hepatic fibrosis in NASH. CONCLUSION: Pharmacological therapy targeting liver CX3CL1/CX3CR1 signaling might be a candidate for the treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
12.
J Clin Invest ; 118(5): 1890-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18414682

RESUMEN

Mutations in the RET gene are the primary cause of Hirschsprung disease (HSCR), or congenital intestinal aganglionosis. However, how RET malfunction leads to HSCR is not known. It has recently been shown that glial cell line-derived neurotrophic factor (GDNF) family receptor alpha1 (GFRalpha1), which binds to GDNF and activates RET, is essential for the survival of enteric neurons. In this study, we investigated Ret regulation of enteric neuron survival and its potential involvement in HSCR. Conditional ablation of Ret in postmigratory enteric neurons caused widespread neuronal death in the colon, which led to colonic aganglionosis. To further examine this finding, we generated a mouse model for HSCR by reducing Ret expression levels. These mice recapitulated the genetic and phenotypic features of HSCR and developed colonic aganglionosis due to impaired migration and successive death of enteric neural crest-derived cells. Death of enteric neurons was also induced in the colon, where reduction of Ret expression was induced after the period of enteric neural crest cell migration, indicating that diminished Ret expression directly affected the survival of colonic neurons. Thus, enteric neuron survival is sensitive to RET dosage, and cell death is potentially involved in the etiology of HSCR.


Asunto(s)
Supervivencia Celular , Colon/citología , Enfermedad de Hirschsprung/genética , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Apoptosis/fisiología , Movimiento Celular/fisiología , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/citología , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Enfermedad de Hirschsprung/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Proteínas Proto-Oncogénicas c-ret/genética
13.
Endocrinology ; 162(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33765141

RESUMEN

The CX3CL1-CX3CR1 system plays an important role in disease progression by regulating inflammation both positively and negatively. We reported previously that C-C chemokine receptors 2 and 5 promote obesity-associated adipose tissue inflammation and insulin resistance. Here, we demonstrate that CX3CL1-CX3CR1 signaling is involved in adipose tissue inflammation and insulin resistance in obese mice via adipose tissue macrophage recruitment and M1/M2 polarization. Cx3cl1 expression was persistently decreased in the epididymal white adipose tissue (eWAT) of high-fat diet-induced obese (DIO) mice, despite increased expression of other chemokines. Interestingly, in Cx3cr1-/- mice, glucose tolerance, insulin resistance, and hepatic steatosis induced by DIO or leptin deficiency were exacerbated. CX3CL1-CX3CR1 signaling deficiency resulted in reduced M2-polarized macrophage migration and an M1-dominant shift of macrophages within eWAT. Furthermore, transplantation of Cx3cr1-/- bone marrow was sufficient to impair glucose tolerance, insulin sensitivity, and regulation of M1/M2 status. Moreover, Cx3cl1 administration in vivo led to the attenuation of glucose intolerance and insulin resistance. Thus, therapy targeting the CX3CL1-CX3CR1 system may be beneficial in the treatment of type 2 diabetes by regulating M1/M2 macrophages.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/genética , Quimiocina CX3CL1/genética , Inflamación/patología , Resistencia a la Insulina/genética , Obesidad , Animales , Células Cultivadas , Dieta Alta en Grasa , Progresión de la Enfermedad , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal/genética
14.
Metabolism ; 125: 154914, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656648

RESUMEN

BACKGROUND AND AIMS: The global prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing. Chemokines and their receptors have potential as therapeutic targets of NAFLD. We investigated the role of CC chemokine ligand 3 (CCL3) in the development of murine and human NAFLD. METHODS: CCL3-knockout mice (CCL3-/-) and littermate CCL3 wild-type control mice (WT) were fed a high-cholesterol and high-fat (CL) diet for 16 weeks to induce NAFLD. We investigated the impact of CCL3 gene deletion in bone marrow cells and leptin-deficient ob/ob mice on CL diet-induced steatohepatitis. We assayed the serum CCL3 levels in 36 patients with biopsy-proven NAFLD and nine healthy control subjects. RESULTS: Compared with normal chow (NC), the CL diet induced steatohepatitis and hepatic fibrosis and elevated the plasma CCL3 level. In the liver, CCL3 protein colocalized with F4/80+ macrophages, especially CD11c+ M1-like macrophages, rather than other cell types. CCL3-/- attenuated CL diet-induced steatohepatitis and fibrosis associated with M2-dominant liver macrophages compared with the WT. The reconstitution of bone marrow (BM) cells from CCL3-/- attenuated steatohepatitis in WT mice fed a CL diet. Furthermore, crossing CCL3-/- onto the ob/ob background prevented CL diet-induced NAFLD in ob/ob mice, which was associated with a lesser inflammatory phenotype of liver macrophages. Also, the serum and hepatic levels of CCL3 were significantly increased in patients with non-alcoholic steatohepatitis (NASH) compared to those with simple fatty liver (NAFL) and healthy subjects. CONCLUSION: Our data indicate that CCL3 facilitates macrophage infiltration into the liver and M1 polarization in the progression of steatohepatitis and highlight the need for further studies to determine the effect of CCL3-CCR1 and -CCR5 signaling blockade on the treatment of NAFLD.


Asunto(s)
Quimiocina CCL3/genética , Hígado Graso/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Animales , Quimiocina CCL3/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/patología , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones , Ratones Noqueados
15.
Sci Rep ; 11(1): 555, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436955

RESUMEN

It remains unclear how hepatic steatosis links to inflammation. Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that senses fat in the liver and is upregulated prior to weight gain. The aim of this study was to investigate the significance of LECT2 in the development of nonalcoholic steatohepatitis (NASH). In human liver biopsy samples, elevated LECT2 mRNA levels were positively correlated with body mass index (BMI) and increased in patients who have steatosis and inflammation in the liver. LECT2 mRNA levels were also positively correlated with the mRNA levels of the inflammatory genes CCR2 and TLR4. In C57BL/6J mice fed with a high-fat diet, mRNA levels of the inflammatory cytokines Tnfa and Nos2 were significantly lower in Lect2 KO mice. In flow cytometry analyses, the number of M1-like macrophages and M1/M2 ratio were significantly lower in Lect2 KO mice than in WT mice. In KUP5, mouse kupffer cell line, LECT2 selectively enhanced the LPS-induced phosphorylation of JNK, but not that of ERK and p38. Consistently, LECT2 enhanced the LPS-induced phosphorylation of MKK4 and TAB2, upstream activators of JNK. Hepatic expression of LECT2 is upregulated in association with the inflammatory signature in human liver tissues. The elevation of LECT2 shifts liver residual macrophage to the M1-like phenotype, and contributes to the development of liver inflammation. These findings shed light on the hepatokine LECT2 as a potential therapeutic target that can dissociate liver steatosis from inflammation.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Activación de Macrófagos/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Dieta Alta en Grasa/efectos adversos , Expresión Génica/genética , Inflamación/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/citología , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Fosforilación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
16.
Endocrinology ; 161(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32790863

RESUMEN

Excessive hepatic lipid accumulation drives the innate immune system and aggravates insulin resistance, hepatic inflammation, and fibrogenesis, leading to nonalcoholic steatohepatitis (NASH). Dipeptidyl peptidase-4 (DPP-4) regulates glucose metabolism and is expressed in many different cell types, including the cells of the immune system. In addition, DPP-4 may be involved in macrophage-mediated inflammation and insulin resistance. This study investigated the effects of anagliptin (Ana), an inhibitor of DPP-4, on macrophage polarity and phenotype in the livers of mice with steatohepatitis. We investigated the effects of Ana on steatohepatitis induced via a high-cholesterol high-fat (CL) diet or a choline-deficient L-amino acid-defined, high-fat (CDAHF) diet. DPP-4 activity, liver histology, and insulin sensitivity were evaluated, and liver DPP-4+ macrophages were quantified using fluorescence-activated cell sorting (FACS). Liver and plasma DPP-4 activity increased significantly in mice on both diets. FACS revealed that, compared with chow-fed mice, the CL-fed mice exhibited a significant increase in the proportion of DPP-4+ liver macrophages, particularly the M1-type macrophages. Ana decreased hepatic lipid and M1 macrophage accumulation and stimulated M2 macrophage accumulation in the liver, thereby attenuating insulin resistance, steatohepatitis, and fibrosis. Importantly, Ana alleviated hepatic fibrosis and steatohepatitis in mice fed CL diet and CDAHF diet. Using Ana to inhibit DPP-4 reduced lipotoxicity-induced hepatic insulin resistance through regulating the M1/M2 macrophage status.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Resistencia a la Insulina , Cirrosis Hepática/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Pirimidinas/farmacología , Animales , Citoprotección/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Células RAW 264.7
17.
J Endocrinol ; 247(2): 169-181, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33032263

RESUMEN

Intestinal mucosal barrier dysfunction is closely related to the pathogenesis of nonalcoholic steatohepatitis (NASH). Gut immunity has been recently demonstrated to regulate gut barrier function. The Lactobacillus pentosus strain S-PT84 activates helper T cells and natural killer/natural killer T cells. In this study, we examined the effect of S-PT84 on NASH progression induced by high-cholesterol/high-fat diet (CL), focusing on the immune responses involved in gut barrier function. C57BL/6 mice were fed a normal chow or CL diet with or without 1 × 1010 S-PT84 for 22 weeks. S-PT84 administration improved hepatic steatosis by decreasing triglyceride and free fatty acid levels by 34% and 37%, respectively. Furthermore, S-PT84 inhibited the development of hepatic inflammation and fibrosis, suppressed F4/80+ macrophage/Kupffer cell infiltration, and reduced liver hydroxyproline content. Administration of S-PT84 alleviated hyperinsulinemia and enhanced hepatic insulin signalling. Compared with mice fed CL diet, mice fed CL+S-PT84 had 71% more CD11c-CD206+ M2 macrophages, resulting in a significantly decreased M1/M2 macrophage ratio in the liver. Moreover, S-PT84 inhibited the CL diet-mediated increase in intestinal permeability. Additionally, S-PT84 reduced the recruitment of interleukin-17-producing T cells and increased the levels of intestinal tight junction proteins, including zonula occludens-1, occludin, claudin-3, and claudin-7. In conclusion, our findings suggest that S-PT84 attenuates diet-induced insulin resistance and subsequent NASH development by maintaining gut permeability. Thus, S-PT84 represents a feasible approach to prevent the development of NASH.


Asunto(s)
Lactobacillus pentosus/fisiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Animales , Microbioma Gastrointestinal/fisiología , Inflamación/microbiología , Inflamación/terapia , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/terapia
18.
Free Radic Biol Med ; 152: 571-582, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31790829

RESUMEN

Excessive fatty acid uptake-induced oxidative stress causes liver injury and the consecutive recruitment of inflammatory immune cells, thereby promoting the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Lycopene, the most effective singlet oxygen scavenger of the antioxidant carotenoids, has anti-inflammatory activity. Here, we investigated the preventive and therapeutic effects of lycopene in a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet. Lycopene alleviated excessive hepatic lipid accumulation and enhanced lipolysis, decreased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis, and subsequently reduced the recruitment of CD4+ and CD8+ T cells in the liver. Importantly, lycopene reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. In parallel, lycopene decreased LPS-/IFN-γ-/TNFα-induced M1 marker mRNA levels in peritoneal macrophages, as well as TGF-ß1-induced expression of fibrogenic genes in a stellate cell line, in a dose-dependent manner. These results were associated with decreased oxidative stress in cells, which might be mediated by the expression of NADPH oxidase subunits. In summary, lycopene prevented and reversed lipotoxicity-induced inflammation and fibrosis in NASH mice by reducing oxidative stress. Therefore, it might be a novel and promising treatment for NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Hígado/metabolismo , Licopeno , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo
19.
Sci Rep ; 10(1): 815, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965018

RESUMEN

Hyperuricemia drives the development of nonalcoholic fatty liver disease (NAFLD). Pharmacological inhibition of xanthine oxidase (XO), a rate-limiting enzyme for uric acid (UA) production, has been demonstrated to improve hepatic steatosis in diet-induced obese mice. However, it remains unclear whether inhibition of XO improves nonalcoholic steatohepatitis (NASH), a more advanced form of NAFLD, in terms of both liver inflammation and fibrosis. Here, we investigated the effects of febuxostat and allopurinol, two XO inhibitors clinically used for gout, on a mouse model of NASH. Furthermore, we conducted a single-arm, open-label intervention study with febuxostat for NAFLD patients with hyperuricemia. Despite a similar hypouricemic effect of the XO inhibitors on blood UA level, febuxostat, but not allopurinol, significantly decreased hepatic XO activity and UA levels in the NASH model mice. These reductions in hepatic XO activity and UA levels were accompanied by attenuation of insulin resistance, lipid peroxidation, and classically activated M1-like macrophage accumulation in the liver. Furthermore, in NAFLD patients with hyperuricemia, treatment with febuxostat for 24 weeks decreased the serum UA level, accompanied by reductions in the serum levels of liver enzymes, alanine aminotransferase and aspartate aminotransferase. XO may represent a promising therapeutic target in NAFLD/NASH, especially in patients with hyperuricemia.


Asunto(s)
Alopurinol/farmacología , Alopurinol/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Febuxostat/farmacología , Febuxostat/uso terapéutico , Resistencia a la Insulina , Xantina Oxidasa/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/etiología , Peroxidación de Lípido/efectos de los fármacos , Hígado/enzimología , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Ácido Úrico/metabolismo
20.
BMJ Open Diabetes Res Care ; 7(1): e000783, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749970

RESUMEN

Objective: We reported previously that empagliflozin-a sodium-glucose cotransporter (SGLT) 2 inhibitor-exhibited preventive effects against obesity. However, it was difficult to extrapolate these results to human subjects. Here, we performed a therapeutic study, which is more relevant to clinical situations in humans, to investigate antiobesity effects of empagliflozin and illustrate the mechanism underlying empagliflozin-mediated enhanced fat browning in obese mice. Research design and methods: After 8 weeks on a high-fat diet (HFD), C57BL/6J mice exhibited obesity, accompanied by insulin resistance and low-grade chronic inflammation. Cohorts of obese mice were continued on the HFD for an additional 8-week treatment period with or without empagliflozin. Results: Treatment with empagliflozin for 8 weeks markedly increased glucose excretion in urine, and suppressed HFD-induced weight gain, insulin resistance and hepatic steatosis. Notably, empagliflozin enhanced oxygen consumption and carbon dioxide production, leading to increased energy expenditure. Consistently, the level of uncoupling protein 1 expression was increased in both brown and white (WAT) adipose tissues of empagliflozin-treated mice. Furthermore, empagliflozin decreased plasma levels of interleukin (IL)-6 and monocyte chemoattractant protein-1, but increased plasma levels of IL-33 and adiponectin in obese mice. Finally, we found that empagliflozin reduced M1-polarized macrophage accumulation, while inducing the anti-inflammatory M2 phenotype of macrophages in the WAT and liver, thereby attenuating obesity-related chronic inflammation. Conclusions: Treatment with empagliflozin attenuated weight gain by increasing energy expenditure and adipose tissue browning, and alleviated obesity-associated inflammation and insulin resistance by alternative macrophage activation in the WAT and liver of obese mice.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/prevención & control , Glucósidos/farmacología , Resistencia a la Insulina , Activación de Macrófagos/efectos de los fármacos , Obesidad/prevención & control , Animales , Hígado Graso/etiología , Hígado Graso/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/patología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA