Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836591

RESUMEN

White adipose tissue (WAT) is a key regulator of systemic energy metabolism, and impaired WAT plasticity characterized by enlargement of preexisting adipocytes associates with WAT dysfunction, obesity, and metabolic complications. However, the mechanisms that retain proper adipose tissue plasticity required for metabolic fitness are unclear. Here, we comprehensively showed that adipocyte-specific DNA methylation, manifested in enhancers and CTCF sites, directs distal enhancer-mediated transcriptomic features required to conserve metabolic functions of white adipocytes. Particularly, genetic ablation of adipocyte Dnmt1, the major methylation writer, led to increased adiposity characterized by increased adipocyte hypertrophy along with reduced expansion of adipocyte precursors (APs). These effects of Dnmt1 deficiency provoked systemic hyperlipidemia and impaired energy metabolism both in lean and obese mice. Mechanistically, Dnmt1 deficiency abrogated mitochondrial bioenergetics by inhibiting mitochondrial fission and promoted aberrant lipid metabolism in adipocytes, rendering adipocyte hypertrophy and WAT dysfunction. Dnmt1-dependent DNA methylation prevented aberrant CTCF binding and, in turn, sustained the proper chromosome architecture to permit interactions between enhancer and dynamin-1-like protein gene Dnm1l (Drp1) in adipocytes. Also, adipose DNMT1 expression inversely correlated with adiposity and markers of metabolic health but positively correlated with AP-specific markers in obese human subjects. Thus, these findings support strategies utilizing Dnmt1 action on mitochondrial bioenergetics in adipocytes to combat obesity and related metabolic pathology.


Asunto(s)
Adipocitos/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Dinámicas Mitocondriales , Adipocitos/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adiposidad , Animales , Factor de Unión a CCCTC/metabolismo , Estructuras Cromosómicas , ADN (Citosina-5-)-Metiltransferasa 1/deficiencia , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN , Dinaminas/genética , Dinaminas/metabolismo , Metabolismo Energético , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Ratones , Mitocondrias/metabolismo , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas , Unión Proteica
2.
Nat Commun ; 15(1): 940, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296968

RESUMEN

In mammals, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) execute sequential thermogenesis to maintain body temperature during cold stimuli. BAT rapidly generates heat through brown adipocyte activation, and further iWAT gradually stimulates beige fat cell differentiation upon prolonged cold challenges. However, fat depot-specific regulatory mechanisms for thermogenic activation of two fat depots are poorly understood. Here, we demonstrate that E3 ubiquitin ligase RNF20 orchestrates adipose thermogenesis with BAT- and iWAT-specific substrates. Upon cold stimuli, BAT RNF20 is rapidly downregulated, resulting in GABPα protein elevation by controlling protein stability, which stimulates thermogenic gene expression. Accordingly, BAT-specific Rnf20 suppression potentiates BAT thermogenic activity via GABPα upregulation. Moreover, upon prolonged cold stimuli, iWAT RNF20 is gradually upregulated to promote de novo beige adipogenesis. Mechanistically, iWAT RNF20 mediates NCoR1 protein degradation, rather than GABPα, to activate PPARγ. Together, current findings propose fat depot-specific regulatory mechanisms for temporal activation of adipose thermogenesis.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Pardo , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Frío , Ligasas/metabolismo , Mamíferos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Termogénesis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Metab ; 6(5): 847-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811804

RESUMEN

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adipocitos , Tejido Adiposo , Metabolismo Energético , Vía de Señalización Hippo , Leptina , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Leptina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Señalizadoras YAP/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Transactivadores/metabolismo , Transactivadores/genética
4.
Nat Commun ; 14(1): 8512, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129377

RESUMEN

Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.


Asunto(s)
Células T Asesinas Naturales , Ratones , Animales , Células T Asesinas Naturales/metabolismo , Ratones Obesos , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Ratones Endogámicos C57BL
5.
Cell Metab ; 34(5): 702-718.e5, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35417665

RESUMEN

Emerging evidence indicates that the accretion of senescent cells is linked to metabolic disorders. However, the underlying mechanisms and metabolic consequences of cellular senescence in obesity remain obscure. In this study, we found that obese adipocytes are senescence-susceptible cells accompanied with genome instability. Additionally, we discovered that SREBP1c may play a key role in genome stability and senescence in adipocytes by modulating DNA-damage responses. Unexpectedly, SREBP1c interacted with PARP1 and potentiated PARP1 activity during DNA repair, independent of its canonical lipogenic function. The genetic depletion of SREBP1c accelerated adipocyte senescence, leading to immune cell recruitment into obese adipose tissue. These deleterious effects provoked unhealthy adipose tissue remodeling and insulin resistance in obesity. In contrast, the elimination of senescent adipocytes alleviated adipose tissue inflammation and improved insulin resistance. These findings revealed distinctive roles of SREBP1c-PARP1 axis in the regulation of adipocyte senescence and will help decipher the metabolic significance of senescence in obesity.


Asunto(s)
Resistencia a la Insulina , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
6.
Cell Rep ; 41(11): 111806, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516764

RESUMEN

In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)ß/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARß/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.


Asunto(s)
Tejido Adiposo Pardo , PPAR-beta , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , PPAR-beta/metabolismo , Lipoproteínas VLDL/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Noqueados , Mamíferos
7.
Diabetes ; 71(7): 1373-1387, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476750

RESUMEN

Excessive hepatic glucose production (HGP) is a key factor promoting hyperglycemia in diabetes. Hepatic cryptochrome 1 (CRY1) plays an important role in maintaining glucose homeostasis by suppressing forkhead box O1 (FOXO1)-mediated HGP. Although downregulation of hepatic CRY1 appears to be associated with increased HGP, the mechanism(s) by which hepatic CRY1 dysregulation confers hyperglycemia in subjects with diabetes is largely unknown. In this study, we demonstrate that a reduction in hepatic CRY1 protein is stimulated by elevated E3 ligase F-box and leucine-rich repeat protein 3 (FBXL3)-dependent proteasomal degradation in diabetic mice. In addition, we found that GSK3ß-induced CRY1 phosphorylation potentiates FBXL3-dependent CRY1 degradation in the liver. Accordingly, in diabetic mice, GSK3ß inhibitors effectively decreased HGP by facilitating the effect of CRY1-mediated FOXO1 degradation on glucose metabolism. Collectively, these data suggest that tight regulation of hepatic CRY1 protein stability is crucial for maintaining systemic glucose homeostasis.


Asunto(s)
Criptocromos , Diabetes Mellitus Experimental , Hiperglucemia , Animales , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Glucosa/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Hiperglucemia/metabolismo , Hígado/metabolismo , Ratones
8.
Nat Commun ; 13(1): 3268, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672324

RESUMEN

Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes.


Asunto(s)
Adipocitos Beige , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , MicroARNs , Adipocitos , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Ratones , MicroARNs/metabolismo , Termogénesis/genética
9.
Cell Metab ; 34(3): 458-472.e6, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35021043

RESUMEN

In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Animales , Mamíferos , Células Madre/metabolismo , Grasa Subcutánea/metabolismo
10.
Diabetes ; 70(12): 2756-2770, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34521642

RESUMEN

Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PDmut) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to extracellular signal-regulated kinase (ERK) activation. In BAT of G6PDmut mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PDmut mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Glucosafosfato Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Termogénesis/genética , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Animales , Células Cultivadas , Glucosafosfato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Diabetes ; 70(1): 182-195, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046512

RESUMEN

Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Beclina-1/metabolismo , Resistencia a la Insulina/genética , Lipodistrofia/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Beclina-1/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Homeostasis/genética , Inflamación/genética , Inflamación/metabolismo , Lipodistrofia/genética , Enfermedades Metabólicas/genética , Ratones , Ratones Noqueados
12.
Mol Cell Biol ; 39(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308132

RESUMEN

Adipocytes have unique morphological traits in insulin sensitivity control. However, how the appearance of adipocytes can determine insulin sensitivity has not been understood. Here, we demonstrate that actin cytoskeleton reorganization upon lipid droplet (LD) configurations in adipocytes plays important roles in insulin-dependent glucose uptake by regulating GLUT4 trafficking. Compared to white adipocytes, brown/beige adipocytes with multilocular LDs exhibited well-developed filamentous actin (F-actin) structure and potentiated GLUT4 translocation to the plasma membrane in the presence of insulin. In contrast, LD enlargement and unilocularization in adipocytes downregulated cortical F-actin formation, eventually leading to decreased F-actin-to-globular actin (G-actin) ratio and suppression of insulin-dependent GLUT4 trafficking. Pharmacological inhibition of actin polymerization accompanied with impaired F/G-actin dynamics reduced glucose uptake in adipose tissue and conferred systemic insulin resistance in mice. Thus, our study reveals that adipocyte remodeling with different LD configurations could be an important factor to determine insulin sensitivity by modulating F/G-actin dynamics.


Asunto(s)
Actinas/metabolismo , Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Gotas Lipídicas/metabolismo , Citoesqueleto de Actina/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Respuesta al Choque por Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA