Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pflugers Arch ; 476(6): 1007-1018, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613695

RESUMEN

Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.


Asunto(s)
Complemento C5a , Potenciales de la Membrana , Ratones Endogámicos C57BL , Neutrófilos , Especies Reactivas de Oxígeno , Animales , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Complemento C5a/metabolismo , Complemento C5a/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratones , Potenciales de la Membrana/fisiología , NADPH Oxidasas/metabolismo , Citoesqueleto de Actina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Movimiento Celular/efectos de los fármacos , Activación Neutrófila , NADPH Oxidasa 2/metabolismo
2.
J Immunol ; 209(1): 136-144, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35715008

RESUMEN

Neutrophil granulocytes are the first and robust responders to the chemotactic molecules released from an inflamed acidic tissue. The aim of this study was to elucidate the role of microenvironmental pH in neutrophil chemotaxis. To this end, we used neutrophils from male C57BL/6J mice and combined live cell imaging chemotaxis assays with measurements of the intracellular pH (pHi) in varied extracellular pH (pHe). Observational studies were complemented by biochemical analyses of leukotriene B4 (LTB4) production and activation of the Cdc42 Rho GTPase. Our data show that pHi of neutrophils dose-dependently adapts to a given pH of the extracellular milieu. Neutrophil chemotaxis toward C5a has an optimum at pHi ∼7.1, and its pHi dependency is almost parallel to that of LTB4 production. Consequently, a shallow pHe gradient, resembling that encountered by neutrophils during extravasation from a blood vessel (pH ∼7.4) into the interstitium (pH ∼7.2), favors chemotaxis of stimulated neutrophils. Lowering pHe below pH 6.8, predominantly affects neutrophil chemotaxis, although the velocity is largely maintained. Inhibition of the Na+/H+ exchanger 1 (NHE1) with cariporide drastically attenuates neutrophil chemotaxis at the optimal pHi irrespective of the high LTB4 production. Neutrophil migration and chemotaxis are almost completely abrogated by inhibiting LTB4 production or blocking its receptor (BLT1). The abundance of the active GTP-bound form of Cdc42 is strongly reduced by NHE1 inhibition or pHe 6.5. In conclusion, we propose that the pH dependence of neutrophil chemotaxis toward C5a is caused by a pHi-dependent production of LTB4 and activation of Cdc42. Moreover, it requires the activity of NHE1.


Asunto(s)
Leucotrieno B4 , Neutrófilos , Animales , Quimiotaxis , Quimiotaxis de Leucocito , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
3.
Pflugers Arch ; 475(10): 1225-1240, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37566113

RESUMEN

Pancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors. The stimuli of the TME trigger Ca2+ signaling and cellular Na+ loading. The Na+/Ca2+ exchanger (NCX) connects the cellular Ca2+ and Na+ homeostasis. The NCX is an electrogenic transporter, which shuffles 1 Ca2+ against 3 Na+ ions over the plasma membrane in a forward or reverse mode. Here, we studied how the impact of NCX activity on PSC migration is modulated by cues from the TME. NCX expression was revealed with qPCR and Western blot. [Ca2+]i, [Na+]i, and the cell membrane potential were determined with the fluorescent indicators Fura-2, Asante NaTRIUM Green-2, and DiBAC4(3), respectively. PSC migration was quantified with live-cell imaging. To mimic the TME, PSCs were exposed to hypoxia, pressure, acidic pH (pH 6.6), and PDGF. NCX-dependent signaling was determined with Western blot analyses. PSCs express NCX1.3 and NCX1.9. [Ca2+]i, [Na+]i, and the cell membrane potential are 94.4 nmol/l, 7.4 mmol/l, and - 39.8 mV, respectively. Thus, NCX1 usually operates in the forward (Ca2+ export) mode. NCX1 plays a differential role in translating cues from the TME into an altered migratory behavior. When NCX1 is operating in the forward mode, its inhibition accelerates PSC migration. Thus, NCX1-mediated extrusion of Ca2+ contributes to a slow mode of migration of PSCs.


Asunto(s)
Células Estrelladas Pancreáticas , Intercambiador de Sodio-Calcio , Humanos , Intercambiador de Sodio-Calcio/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transducción de Señal , Hipoxia , Calcio/metabolismo
5.
Pflugers Arch ; 470(7): 1017-1033, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29717355

RESUMEN

Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.


Asunto(s)
Granulocitos/metabolismo , Neutrófilos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Humanos , Microambiente Tumoral/fisiología
6.
JCI Insight ; 8(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37643024

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) progresses in an organ with a unique pH landscape, where the stroma acidifies after each meal. We hypothesized that disrupting this pH landscape during PDAC progression triggers pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) to induce PDAC fibrosis. We revealed that alkaline environmental pH was sufficient to induce PSC differentiation to a myofibroblastic phenotype. We then mechanistically dissected this finding, focusing on the involvement of the Na+/H+ exchanger NHE1. Perturbing cellular pH homeostasis by inhibiting NHE1 with cariporide partially altered the myofibroblastic PSC phenotype. To show the relevance of this finding in vivo, we targeted NHE1 in murine PDAC (KPfC). Indeed, tumor fibrosis decreased when mice received the NHE1-inhibitor cariporide in addition to gemcitabine treatment. Moreover, the tumor immune infiltrate shifted from granulocyte rich to more lymphocytic. Taken together, our study provides mechanistic evidence on how the pancreatic pH landscape shapes pancreatic cancer through tuning PSC differentiation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Células Estrelladas Pancreáticas/patología , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Fenotipo , Homeostasis , Fibrosis , Neoplasias Pancreáticas
7.
Front Immunol ; 11: 2124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013896

RESUMEN

The importance of the intracellular Ca2+ concentration ([Ca2+]i) in neutrophil function has been intensely studied. However, the role of the intracellular Na+ concentration ([Na+]i) which is closely linked to the intracellular Ca2+ regulation has been largely overlooked. The [Na+]i is regulated by Na+ transport proteins such as the Na+/Ca2+-exchanger (NCX1), Na+/K+-ATPase, and Na+-permeable, transient receptor potential melastatin 2 (TRPM2) channel. Stimulating with either N-formylmethionine-leucyl-phenylalanine (fMLF) or complement protein C5a causes distinct changes of the [Na+]i. fMLF induces a sustained increase of [Na+]i, surprisingly, reaching higher values in TRPM2-/- neutrophils. This outcome is unexpected and remains unexplained. In both genotypes, C5a elicits only a transient rise of the [Na+]i. The difference in [Na+]i measured at t = 10 min after stimulation is inversely related to neutrophil chemotaxis. Neutrophil chemotaxis is more efficient in C5a than in an fMLF gradient. Moreover, lowering the extracellular Na+ concentration from 140 to 72 mM improves chemotaxis of WT but not of TRPM2-/- neutrophils. Increasing the [Na+]i by inhibiting the Na+/K+-ATPase results in disrupted chemotaxis. This is most likely due to the impact of the altered Na+ homeostasis and presumably NCX1 function whose expression was shown by means of qPCR and which critically relies on proper extra- to intracellular Na+ concentration gradients. Increasing the [Na+]i by a few mmol/l may suffice to switch its transport mode from forward (Ca2+-efflux) to reverse (Ca2+-influx) mode. The role of NCX1 in neutrophil chemotaxis is corroborated by its blocker, which also causes a complete inhibition of chemotaxis.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Homeostasis/inmunología , Sodio/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Calcio/fisiología , Línea Celular Tumoral , Células Cultivadas , Quimiotaxis de Leucocito/efectos de los fármacos , Complemento C5a/inmunología , Complemento C5a/farmacología , Líquido Intracelular/inmunología , Leucemia Mieloide , Ratones , Ratones Endogámicos C57BL , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Intercambiador de Sodio-Calcio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Canales Catiónicos TRPM/deficiencia
8.
Front Pharmacol ; 11: 586599, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33841132

RESUMEN

Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.

9.
J Mol Med (Berl) ; 98(3): 349-360, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950205

RESUMEN

Here we report a novel role for TRPC6, a member of the transient receptor potential (TRPC) channel family, in the CXCL1-dependent recruitment of murine neutrophil granulocytes. Representing a central element of the innate immune system, neutrophils are recruited from the blood stream to a site of inflammation. The recruitment process follows a well-defined sequence of events including adhesion to the blood vessel walls, migration, and chemotaxis to reach the inflammatory focus. A common feature of the underlying signaling pathways is the utilization of Ca2+ ions as intracellular second messengers. However, the required Ca2+ influx channels are not yet fully characterized. We used WT and TRPC6-/- neutrophils for in vitro and TRPC6-/- chimeric mice (WT mice with WT or TRPC6-/- bone marrow cells) for in vivo studies. After renal ischemia and reperfusion injury, TRPC6-/- chimeric mice had an attenuated TRPC6-/- neutrophil recruitment and a better outcome as judged from the reduced increase in the plasma creatinine concentration. In the cremaster model CXCL1-induced neutrophil adhesion, arrest and transmigration were also decreased in chimeric mice with TRPC6-/- neutrophils. Using atomic force microscopy and microfluidics, we could attribute the recruitment defect of TRPC6-/- neutrophils to the impact of the channel on adhesion to endothelial cells. Mechanistically, TRPC6-/- neutrophils exhibited lower Ca2+ transients during the initial adhesion leading to diminished Rap1 and ß2 integrin activation and thereby reduced ICAM-1 binding. In summary, our study reveals that TRPC6 channels in neutrophils are crucial signaling modules in their recruitment from the blood stream in response to CXCL1. KEY POINT: Neutrophil TRPC6 channels are crucial for CXCL1-triggered activation of integrins during the initial steps of neutrophil recruitment.


Asunto(s)
Quimiocina CXCL1/inmunología , Enfermedades Renales/inmunología , Neutrófilos/fisiología , Daño por Reperfusión/inmunología , Canal Catiónico TRPC6/inmunología , Animales , Calcio/metabolismo , Adhesión Celular , Quimiotaxis , Riñón/inmunología , Riñón/metabolismo , Enfermedades Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/metabolismo
10.
Cancers (Basel) ; 12(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887220

RESUMEN

Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.

11.
Front Physiol ; 11: 89, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116794

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an acidic and fibrotic stroma. The extracellular matrix (ECM) causing the fibrosis is primarily formed by pancreatic stellate cells (PSCs). The effects of the altered biomechanics and pH landscape in the pathogenesis of PDAC, however, are poorly understood. Mechanotransduction in cells has been linked to the function of mechanosensitive ion channels such as Piezo1. Here, we tested whether this channel plays crucial roles in transducing mechanical signals in the acidic PDAC microenvironment. We performed immunofluorescence, Ca2+ influx and intracellular pH measurements in PSCs and complemented them by live-cell imaging migration experiments in order to assess the function of Piezo1 channels in PSCs. We evaluated whether Piezo1 responds to changes of extracellular and/or intracellular pH in the pathophysiological range (pH 6.6 and pH 6.9, respectively). We validated our results using Piezo1-transfected HEK293 cells as a model system. Indeed, acidification of the intracellular space severely inhibits Piezo1-mediated Ca2+ influx into PSCs. In addition, stimulation of Piezo1 channels with its activator Yoda1 accelerates migration of PSCs on a two-dimensional ECM as well as in a 3D setting. Furthermore, Yoda1-activated PSCs transmit more force to the surrounding ECM under physiological pH, as revealed by measuring the dislocation of microbeads embedded in the surrounding matrix. This is paralleled by an enhanced phosphorylation of myosin light chain isoform 9 after Piezo1 stimulation. Intriguingly, upon acidification, Piezo1 activation leads to the initiation of cell death and disruption of PSC spheroids. In summary, stimulating Piezo1 activates PSCs by inducing Ca2+ influx which in turn alters the cytoskeletal architecture. This results in increased cellular motility and ECM traction, which can be useful for the cells to invade the surroundings and to detach from the tissue. However, in the presence of an acidic extracellular pH, although net Ca2+ influx is reduced, Piezo1 activation leads to severe cell stress also limiting cellular viability. In conclusion, our results indicate a strong interdependence between environmental pH, the mechanical output of PSCs and stromal mechanics, which promotes early local invasion of PDAC cells.

12.
Cell Calcium ; 80: 79-90, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30991298

RESUMEN

In many cases, the mechanical properties of a tumor are different from those of the host tissue. Mechanical cues regulate cancer development by affecting both tumor cells and their microenvironment, by altering cell migration, proliferation, extracellular matrix remodeling and metastatic spread. Cancer cells sense mechanical stimuli such as tissue stiffness, shear stress, tissue pressure of the extracellular space (outside-in mechanosensation). These mechanical cues are transduced into a cellular response (e. g. cell migration and proliferation; inside-in mechanotransduction) or to a response affecting the microenvironment (e. g. inducing a fibrosis or building up growth-induced pressure; inside-out mechanotransduction). These processes heavily rely on mechanosensitive membrane proteins, prominently ion channels. Mechanosensitive ion channels are involved in the Ca2+-signaling of the tumor and stroma cells, both directly, by mediating Ca2+ influx (e. g. Piezo and TRP channels), or indirectly, by maintaining the electrochemical gradient necessary for Ca2+ influx (e. g. K2P, KCa channels). This review aims to discuss the diverse roles of mechanosenstive ion channels in cancer progression, especially those involved in Ca2+-signaling, by pinpointing their functional relevance in tumor pathophysiology.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Neoplasias/metabolismo , Animales , Señalización del Calcio , Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Humanos , Escape del Tumor , Microambiente Tumoral
13.
Immunobiology ; 222(6): 846-857, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28576353

RESUMEN

Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPß (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPß expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPß protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.


Asunto(s)
Células Precursoras de Granulocitos/fisiología , Granulocitos/fisiología , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis , Hemo-Oxigenasa 1/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Estallido Respiratorio
14.
Immunobiology ; 222(3): 506-517, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27817989

RESUMEN

Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPß (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPß expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPß protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.


Asunto(s)
Diferenciación Celular/genética , Células Precursoras de Granulocitos/citología , Células Precursoras de Granulocitos/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Hemo-Oxigenasa 1/genética , Mielopoyesis/genética , Animales , Biomarcadores , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos/sangre , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hemo-Oxigenasa 1/metabolismo , Inmunofenotipificación , Recuento de Leucocitos , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA