RESUMEN
"Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations.
Asunto(s)
Evolución Biológica , Cefalópodos/fisiología , Ecosistema , Océanos y Mares , Animales , Cefalópodos/genética , DemografíaRESUMEN
Coleoid cephalopods camouflage on timescales of seconds to match their visual surroundings. To date, studies of cephalopod camouflage-to-substrate have been focused primarily on benthic cuttlefish and octopus, because they are readily found sitting on the substrate. In contrast to benthic cephalopods, oval squid (Sepioteuthis lessoniana species complex) are semi-pelagic animals that spend most of their time in the water column. In this study, we demonstrate that in captivity, S. lessoniana Sp.2 (Shiro-ika, white-squid) from the Okinawa archipelago, Japan, adapts the coloration of their skin using their chromatophores according to the background substrate. We show that if the animal moves between substrates of different reflectivity, the body patterning is changed to match. Chromatophore matching to substrate has not been reported in any loliginid cephalopod under laboratory conditions. Adaptation of the chromatophore system to the bottom substrate in the laboratory is a novel experimental finding that establishes oval squid as laboratory model animals for further research on camouflage.