Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 30(32): 10624-38, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702695

RESUMEN

Fragile X syndrome (FXS) is an inherited neurologic disease caused by loss of fragile X mental retardation protein (FMRP), which is hypothesized to mediate negative regulation of mRNA translation at synapses. A prominent feature of FXS animal models is exaggerated signaling through group 1 metabotropic glutamate receptors (gp1 mGluRs), and therapeutic strategies to treat FXS are targeted mainly at gp1 mGluRs. Recent studies, however, indicate that a variety of receptor-mediated signal transduction pathways are dysregulated in FXS, suggesting that FMRP acts on a common downstream signaling molecule. Here, we show that deficiency of FMRP results in excess activity of phosphoinositide 3-kinase (PI3K), a downstream signaling molecule of many cell surface receptors. In Fmr1 knock-out neurons, excess synaptic PI3K activity can be reduced by perturbation of gp1 mGluR-mediated signaling. Remarkably, increased PI3K activity was also observed in FMRP-deficient non-neuronal cells in the absence of gp1 mGluRs. Here, we show that FMRP regulates the synthesis and synaptic localization of p110beta, the catalytic subunit of PI3K. In wild type, gp1 mGluR activation induces p110beta translation, p110beta protein expression, and PI3K activity. In contrast, both p110beta protein synthesis and PI3K activity are elevated and insensitive to gp1 mGluR stimulation in Fmr1 knock-out. This suggests that dysregulated PI3K signaling may underlie the synaptic impairments in FXS. In support of this hypothesis, we show that PI3K antagonists rescue three FXS-associated phenotypes: dysregulated synaptic protein synthesis, excess AMPA receptor internalization, and increased spine density. Targeting excessive PI3K activity might thus be a potent therapeutic strategy for FXS.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Análisis de Varianza , Animales , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I , Dendritas/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Inmunoprecipitación/métodos , Proteínas Luminiscentes/genética , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Noqueados , Modelos Biológicos , Neuronas/metabolismo , Neuronas/ultraestructura , Fosfatidilinositol 3-Quinasas/genética , Subunidades de Proteína/genética , ARN Mensajero/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Transfección/métodos , Proteína Fluorescente Roja
2.
Dev Cell ; 8(1): 43-52, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15621528

RESUMEN

Fragile X syndrome, the most common form of inherited mental retardation, is caused by loss of function for the Fragile X Mental Retardation 1 gene (FMR1). FMR1 protein (FMRP) has specific mRNA targets and is thought to be involved in their transport to subsynaptic sites as well as translation regulation. We report a saturating genetic screen of the Drosophila autosomal genome to identify functional partners of dFmr1. We recovered 19 mutations in the tumor suppressor lethal (2) giant larvae (dlgl) gene and 90 mutations at other loci. dlgl encodes a cytoskeletal protein involved in cellular polarity and cytoplasmic transport and is regulated by the PAR complex through phosphorylation. We provide direct evidence for a Fmrp/Lgl/mRNA complex, which functions in neural development in flies and is developmentally regulated in mice. Our data suggest that Lgl may regulate Fmrp/mRNA sorting, transport, and anchoring via the PAR complex.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Drosophila/metabolismo , Genes Supresores de Tumor/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Western Blotting/métodos , Fraccionamiento Celular/métodos , Células Cultivadas , Clonación Molecular/métodos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Drosophila , Ojo/patología , Ojo/ultraestructura , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica/métodos , Ratones , Microscopía Electrónica de Rastreo/métodos , Mutagénesis , Mutación , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Mensajero/metabolismo , Retina/patología , Retina/ultraestructura , Fracciones Subcelulares/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
3.
J Neurosci ; 27(52): 14349-57, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18160642

RESUMEN

Fragile X syndrome is a common form of inherited mental retardation and is caused by loss of fragile X mental retardation protein (FMRP), a selective RNA-binding protein that influences the translation of target messages. Here, we identify protein phosphatase 2A (PP2A) as an FMRP phosphatase and report rapid FMRP dephosphorylation after immediate group I metabotropic glutamate receptor (mGluR) stimulation (<1 min) in neurons caused by enhanced PP2A enzymatic activity. In contrast, extended mGluR activation (1-5 min) resulted in mammalian target of rapamycin (mTOR)-mediated PP2A suppression and FMRP rephosphorylation. These activity-dependent changes in FMRP phosphorylation were also observed in dendrites and showed a temporal correlation with the translational profile of select FMRP target transcripts. Collectively, these data reveal an immediate-early signaling pathway linking group I mGluR activity to rapid FMRP phosphorylation dynamics mediated by mTOR and PP2A.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Animales , Células Cultivadas , Embrión de Mamíferos , Activación Enzimática/efectos de los fármacos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Hipocampo/citología , Inmunoprecipitación/métodos , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosforilación , Proteína Fosfatasa 2/genética , Piridinas/farmacología , Ratas , Transducción de Señal , Factores de Tiempo , Transfección/métodos
4.
Nat Neurosci ; 7(2): 113-7, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14703574

RESUMEN

Fragile X syndrome is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein which forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, mRNA ligands associated with FMRP have been identified. However, the mechanism by which FMRP regulates the translation of its mRNA ligands remains unclear. MicroRNAs are small noncoding RNAs involved in translational control. Here we show that in vivo mammalian FMRP interacts with microRNAs and the components of the microRNA pathways including Dicer and the mammalian ortholog of Argonaute 1 (AGO1). Using two different Drosophila melanogaster models, we show that AGO1 is critical for FMRP function in neural development and synaptogenesis. Our results suggest that FMRP may regulate neuronal translation via microRNAs and links microRNAs with human disease.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas Argonautas , Western Blotting , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ojo/ultraestructura , Células HeLa , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica de Rastreo , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Plasticidad Neuronal/genética , Pruebas de Precipitina , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasa III/metabolismo
5.
Arch Neurol ; 59(3): 474-7, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11890856

RESUMEN

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset autosomal dominant muscle disease with a worldwide distribution. Recent findings reveal the genetic basis of this disease to be mutations in the polyA binding-protein 2 (PABP2) gene that involve short expansions of the GCG trinucleotide repeat encoding a polyalanine tract. The underlying mechanism causing the triplet-expansion mutation in PABP2 remains to be elucidated, although the DNA slippage model is thought to be a plausible explanation of that. METHODS AND RESULTS: We analyzed PABP2 using polymerase chain reaction analysis and DNA sequencing in Japanese patients with pathologically confirmed OPMD, and found mutated (GCG)(6)GCA(GCG)(3)(GCA)(3)GCG and (GCG)(6)(GCA)(3)(GCG)(2)(GCA)(3)GCG alleles instead of the normal (GCG)(6)(GCA)(3)GCG allele. These mutated alleles could be explained by the insertions or duplications of (GCG)(3)GCA and (GCG)(2)(GCA)(3), respectively, but not by the simple expansion of GCG repeats. The clinical features of our patients were compatible with those of other Japanese patients carrying PABP2 that encodes a polyalanine tract of the same length, but were not compatible with those of Italian patients. CONCLUSIONS: The mutated alleles identified in our Japanese patients with OPMD were most likely due to duplications of (GCG)(3)GCA and (GCG)(2)(GCA)(3) but not simple expansions of the GCG repeats. Therefore, unequal crossing-over of 2 PABP2 alleles, rather than DNA slippage, is probably the causative mechanism of OPMD mutations. All mutations that have been reported in patients with OPMD so far can be explained with the mechanism of unequal crossing-over. On the other hand, comparison of the clinical features of our patients with those of other patients in previous reports suggests that specific clinical features cannot be attributed to the length of the polyalanine tract per se.


Asunto(s)
Pueblo Asiatico/genética , Cruzamientos Genéticos , Distrofias Musculares/genética , Mutación/genética , Proteínas de Unión al ARN/genética , Anciano , Alelos , Secuencia de Bases/genética , Elementos Transponibles de ADN , Femenino , Duplicación de Gen , Humanos , Japón , Masculino , Datos de Secuencia Molecular , Proteínas de Unión a Poli(A) , Secuencias Repetitivas de Ácidos Nucleicos/genética
6.
J Biol Chem ; 283(27): 18478-82, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18474609

RESUMEN

Fragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A. Further, the loss of hippocampal S6K1 and the subsequent absence of phospho-FMRP mimic FMRP loss in the increased expression of SAPAP3, a synapse-associated FMRP target mRNA. Together these data reveal a S6K1-PP2A signaling module regulating FMRP function and place FMRP phosphorylation in the mGluR-triggered signaling cascade required for protein-synthesis-dependent synaptic plasticity.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Neuronas/patología , Fosforilación , Biosíntesis de Proteínas/genética , Proteínas Quinasas/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR
7.
Proc Natl Acad Sci U S A ; 104(39): 15537-42, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17881561

RESUMEN

Fragile X syndrome (FXS), a common inherited form of mental retardation, is caused by the functional absence of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates the translation of specific mRNAs at synapses. Altered synaptic plasticity has been described in a mouse FXS model. However, the mechanism by which the loss of FMRP alters synaptic function, and subsequently causes the mental impairment, is unknown. Here, in cultured hippocampal neurons, we used siRNAs against Fmr1 to demonstrate that a reduction of FMRP in dendrites leads to an increase in internalization of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit, GluR1, in dendrites. This abnormal AMPAR trafficking was caused by spontaneous action potential-driven network activity without synaptic stimulation by an exogenous agonist and was rescued by 2-methyl-6-phenylethynyl-pyridine (MPEP), an mGluR5-specific inverse agonist. Because AMPAR internalization depends on local protein synthesis after mGluR5 stimulation, FMRP, a negative regulator of translation, may be viewed as a counterbalancing signal, wherein the absence of FMRP leads to an apparent excess of mGluR5 signaling in dendrites. Because AMPAR trafficking is a driving process for synaptic plasticity underlying learning and memory, our data suggest that hypersensitive AMPAR internalization in response to excess mGluR signaling may represent a principal cellular defect in FXS, which may be corrected by using mGluR antagonists.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , Discapacidad Intelectual/genética , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipocampo/metabolismo , Microscopía Confocal , Neuronas/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo
8.
Hum Mol Genet ; 14(24): 3813-21, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16239240

RESUMEN

One mechanism by which endogenous microRNAs (miRNAs) function is to suppress translation of target mRNAs. Computational identification of target mRNAs is hampered by the partial complementarity between miRNAs and their targets and the lack of in vivo approaches to identify targets. Here, we identify mRNAs that are regulated by specific endogenous miRNA by detecting shifts in individual mRNA abundance in polyribosome profiles following miRNA knockdown via siRNA. We have identified human genes whose mRNAs were found at significantly increased levels in the heavy polyribosome fractions following miRNA miR-30a-3p knockdown. If antibody was available, targets showed an increase in protein levels following the miRNA knockdown and a decrease following the miRNA overexpression. Although all identified transcripts have sequences that partially complement miR-30a-3p, none was identified by commonly used computational means. These data suggest that the functional interaction between miRNAs and mRNA targets is more complex than previously realized and describe an approach to refine predictive algorithms.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs , Regiones no Traducidas 3' , Secuencia de Bases , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Interferente Pequeño , Programas Informáticos , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA