Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(37): 8230-8234, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32428360

RESUMEN

A catalytic enantioselective synthesis of ß-amino secondary amides was achieved using vinyl azides as the enamine-type nucleophile and chiral N-Tf phosphoramide as the chiral Brønsted acid catalyst through a five-step sequential transformation in one pot. The established sequential transformation involves an enantioselective [4+2] cycloaddition reaction of vinyl azides with N-acyl imines as the key stereo-determining step that is efficiently accelerated by a chiral N-Tf phosphoramide catalyst in a highly enantioselective manner in most cases. Further generation of the iminodiazonium ion intermediate through ring opening of the cycloaddition product and subsequent skeletal rearrangement involving Schmidt-type 1,2-aryl group migration followed by recyclization of the resulting nitrilium ion were also initiated by the same acid catalyst. Final acid hydrolysis of the recyclized products in the same pot gave rise to enantioenriched ß-amino amides through C-C bond formation at the α-position of the secondary amides.

2.
J Am Chem Soc ; 140(7): 2629-2642, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29377689

RESUMEN

Chiral counterion controlled asymmetric catalysis via an ion-pairing interaction has attracted immense attention in recent years. Despite a number of successful studies, the mechanistic elucidation of the stereocontrolling element in the ion-pairing interaction is rarely conducted and hence its nature is still far from being well understood. Herein we report an in-depth mechanistic case study of a newly developed enantioselective ring expansion reaction of 1,3-dithiane derivatives catalyzed by chiral phosphoric acid (CPA). An unprecedented enantioselective 1,2-sulfur rearrangement/stereospecific nucleophilic addition sequence was proven to be the stereoselective pathway. More importantly, by thorough investigation of the intrinsic nature of the stereospecific nucleophilic addition to the cationic thionium intermediate, we discovered that the key interaction in this process is the nonclassical C-H···O hydrogen bonds formed between the conjugate base of the CPA catalyst and the cationic intermediate. These C-H···O hydrogen bonds not only bind the catalyst to the substrates to form energetically favored states throughout the overall processes but also firmly maintain the relative positions of these fragments as the "fixed" contact ion pair to sustain the chiral information generated at the initial sulfur rearrangement step. This mechanistic case study provides a very clear understanding of the nature of the ion-pairing interaction in organocatalysis. The conclusion encourages the further development of the research field with the focus to design new organocatalysts and cultivate novel organocatalytic transformations.

3.
Chem Sci ; 14(21): 5712-5721, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37265716

RESUMEN

Computational analyses have revealed that the distortion of a catalyst and the substrates and their interactions are key to determining the stability of the transition state. Hence, two strategies "distortion strategy" and "interaction strategy" can be proposed for improving enantiomeric excess in enantioselective reactions. The "distortion strategy" is used as a conventional approach that destabilizes the TS (transition state) of the minor pathway. On the other hand, the "interaction strategy" focuses on the stabilization of the TS of the major pathway in which an enhancement of the reaction rate is expected. To realize this strategy, we envisioned the TS stabilization of the major reaction pathway by reinforcing hydrogen bonding and adopted the chiral phosphoric acid-catalysed enantioselective Diels-Alder reaction of 2-vinylquinolines with dienylcarbamates. The intended "interaction strategy" led to remarkable improvements in the enantioselectivity and reaction rate.

4.
RSC Adv ; 13(51): 36293-36300, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38090084

RESUMEN

An exo-selective Diels-Alder (exo-DA) reaction in which the formed diastereomer is different from that formed in the conventional endo-selective Diels-Alder (endo-DA) reaction was developed, which involves a dual-functional Brønsted acid as a catalyst and not only a dienophile (vinylquinoline) but also an acyclic diene (dienylcarbamate) having a sterically less demanding substituent. Factors necessary for achieving the exo-DA reaction were extracted through an exhaustive computational search of the corresponding transition states, in which the relative orientation of the dienophile and the acyclic diene is firmly defined by hydrogen bonding interactions with a dual-functional Brønsted acid catalyst. It was experimentally verified that the combined use of the dual-functional acid catalyst, such as phosphoric acid, and the conformationally restricted diene (dienylcarbamate), which was realized by the introduction of a substituent at the 2-position of the diene unit, is the key to achieving the exo-DA reaction. A catalytic enantioselective exo-DA reaction was also attempted by using a chiral phosphoric acid catalyst, which gave rise to the corresponding exo-adduct with fairly good enantioselectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA