Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant Cell ; 26(1): 89-101, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24415769

RESUMEN

The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Solanum lycopersicum/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN
2.
Plant Cell ; 25(2): 371-86, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23386264

RESUMEN

The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling.


Asunto(s)
Frutas/crecimiento & desarrollo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Sitios de Unión , Carotenoides/metabolismo , Clorofila/metabolismo , Inmunoprecipitación de Cromatina , Ciclopropanos/farmacología , Etilenos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Licopeno , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/fisiología , Proteínas de Dominio MADS/genética , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell Physiol ; 56(6): 1097-106, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25746985

RESUMEN

Pedicel abscission occurs widely in fruit-bearing plants to detach ripe, senescent or diseased organs, and regulation of abscission plays a substantial role in regulating yield and quality in fruit crops. In tomato, development of pedicel abscission zones (AZs) requires the MADS-box genes JOINTLESS (J), MACROCALYX (MC) and SlMBP21. In other plants, however, the involvement of MADS-box genes in pedicel abscission remains unclear. Here, we used genetic and biochemical methods to characterize apple J homologs in the context of the regulation of abscission in tomato. We identified three genes encoding two J homologs, MdJa and MdJb. Similarly to J, MdJa and MdJb interacted with MC and SlMBP21, but their interactions differed slightly: like J, MdJb formed a multimer (probably a tetramer) with SlMBP21; however, MdJa formed multimers to a lesser extent. Ectopic expression of MdJb in a J-deficient tomato mutant restored development of functional pedicel AZs, but ectopic expression of MdJa did not complement j mutants. Introduction of MdJb also restored expression of J-dependent genes in the mutant, such as genes for polygalacturonase, cellulase and AZ-specific transcription factors. These results suggest a potentially conserved mechanism of pedicel AZ development in apple and other plants, regulated by MADS-box transcription factors.


Asunto(s)
Frutas/metabolismo , Proteínas de Dominio MADS/metabolismo , Malus/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulación hacia Abajo/genética , Ensayo de Cambio de Movilidad Electroforética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Malus/genética , Malus/crecimiento & desarrollo , Mutación/genética , Fenotipo , Filogenia , Proteínas de Plantas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
4.
J Exp Bot ; 65(12): 3111-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24744429

RESUMEN

In plants, abscission removes senescent, injured, infected, or dispensable organs. Induced by auxin depletion and an ethylene burst, abscission requires pronounced changes in gene expression, including genes for cell separation enzymes and regulators of signal transduction and transcription. However, the understanding of the molecular basis of this regulation remains incomplete. To examine gene regulation in abscission, this study examined an ERF family transcription factor, tomato (Solanum lycopersicum) ETHYLENE-RESPONSIVE FACTOR 52 (SlERF52). SlERF52 is specifically expressed in pedicel abscission zones (AZs) and SlERF52 expression is suppressed in plants with impaired function of MACROCALYX and JOINTLESS, which regulate pedicel AZ development. RNA interference was used to knock down SlERF52 expression to show that SlERF52 functions in flower pedicel abscission. When treated with an abscission-inducing stimulus, the SlERF52-suppressed plants showed a significant delay in flower abscission compared with wild type. They also showed reduced upregulation of the genes for the abscission-associated enzymes cellulase and polygalacturonase. SlERF52 suppression also affected gene expression before the abscission stimulus, inhibiting the expression of pedicel AZ-specific transcription factor genes, such as the tomato WUSCHEL homologue, GOBLET, and Lateral suppressor, which may regulate meristematic activities in pedicel AZs. These results suggest that SlERF52 plays a pivotal role in transcriptional regulation in pedicel AZs at both pre-abscission and abscission stages.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Factor de Transcripción AP-2/genética , Secuencia de Aminoácidos , Flores/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Factor de Transcripción AP-2/metabolismo
5.
Biosci Biotechnol Biochem ; 78(2): 231-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036675

RESUMEN

Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.


Asunto(s)
Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/anatomía & histología , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/genética , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
6.
Plant Mol Biol ; 82(4-5): 427-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677393

RESUMEN

The tomato MADS-box transcription factor RIN acts as a master regulator of fruit ripening. Here, we identified MADS-box proteins that interact with RIN; we also provide evidence that these proteins act in the regulation of fruit ripening. We conducted a yeast two-hybrid screen of a cDNA library from ripening fruit, for genes encoding proteins that bind to RIN. The screen identified two MADS-box genes, FUL1 and FUL2 (previously called TDR4 and SlMBP7), both of which have high sequence similarity to Arabidopsis FRUITFULL. Expression analyses revealed that the FUL1 mRNA and FUL1 protein accumulate in a ripening-specific manner in tomato fruits and FUL2 mRNA and protein accumulate at the pre-ripening stage and throughout ripening. Biochemical analyses confirmed that FUL1 and FUL2 form heterodimers with RIN; this interaction required the FUL1 and FUL2 C-terminal domains. Also, the heterodimers bind to a typical target DNA motif for MADS-box proteins. Chromatin immunoprecipitation assays revealed that FUL1 and FUL2 bind to genomic sites that were previously identified as RIN-target sites, such as the promoter regions of ACS2, ACS4 and RIN. These findings suggest that RIN forms complexes with FUL1 and FUL2 and these complexes regulate expression of ripening-related genes. In addition to the functional redundancy between FUL1 and FUL2, we also found they have potentially divergent roles in transcriptional regulation, including a difference in genomic target sites.


Asunto(s)
Frutas/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética
7.
BMC Plant Biol ; 13: 40, 2013 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-23497084

RESUMEN

BACKGROUND: Detachment of plant organs occurs in abscission zones (AZs). During plant growth, the AZ forms, but does not develop further until the cells perceive abscission-promoting signals and initiate detachment. Upon signal perception, abscission initiates immediately; if there is no signal, abscission is not induced and the organ remains attached to the plant. However, little attention has been paid to the genes that maintain competence to respond to the abscission signal in the pre-abscission AZ. Recently, we found that the tomato (Solanum lycopersicum) transcription factors BLIND (Bl), GOBLET (GOB), Lateral suppressor (Ls) and a tomato WUSCHEL homologue (LeWUS) are expressed specifically in pre-abscission tissue, the anthesis pedicel AZs. To advance our understanding of abscission, here we profiled genome-wide gene expression in tomato flower pedicels at the pre-abscission stage. RESULTS: We examined the transcriptomes of three tomato flower pedicel regions, the AZ and flanking proximal- (Prox) and distal- (Dis) regions, and identified 89 genes that were preferentially expressed in the AZ compared to both Prox and Dis. These genes included several transcription factors that regulate apical or axillary shoot meristem activity. Also, genes associated with auxin activity were regulated in a Prox-Dis region-specific manner, suggesting that a gradient of auxin exists in the pedicel. A MADS-box gene affecting floral transition was preferentially expressed in the Prox region and other MADS-box genes for floral organ identification were preferentially expressed in Dis, implying that the morphologically similar Prox and Dis regions have distinct identities. We also analyzed the expression of known regulators; in anthesis pedicels, Bl, GOB, Ls and LeWUS were expressed in the vascular cells of the AZ region. However, after an abscission signal, Bl was up-regulated, but GOB, Ls and LeWUS were down-regulated, suggesting that Bl may be a positive regulator of abscission, but the others may be negative regulators. CONCLUSIONS: This study reveals region-specific gene expression in tomato flower pedicels at anthesis and identifies factors that may determine the physiological properties of the pre-abscission pedicel. The region-specific transcriptional regulators and genes for auxin activity identified here may prevent flower abscission in the absence of signal or establish competence to respond to the abscission signal.


Asunto(s)
Flores/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Transcriptoma/fisiología
8.
Plant Physiol ; 158(1): 439-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22106095

RESUMEN

Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development.


Asunto(s)
Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
9.
Planta ; 235(6): 1107-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22160566

RESUMEN

The physiological and biochemical changes in fruit ripening produce key attributes of fruit quality including color, taste, aroma and texture. These changes are driven by the highly regulated and synchronized activation of a huge number of ripening-associated genes. In tomato (Solanum lycopersicum), a typical climacteric fruit, the MADS-box transcription factor RIN is one of the earliest-acting ripening regulators, required for both ethylene-dependent and ethylene-independent pathways. Although we previously identified several direct RIN targets, many additional targets remain unidentified, likely including key ripening-associated genes. Here, we report the identification of novel RIN targets by transcriptome and chromatin immunoprecipitation (ChIP) analyses. Transcriptome comparisons by microarray of wild-type and rin mutant tomatoes identified 342 positively regulated genes and 473 negatively regulated genes by RIN during ripening. Most of the positively regulated genes contained possible RIN-binding (CArG-box) sequences in their promoters. Subsequently, we selected six genes from the positively regulated genes and a ripening regulator gene, CNR, and assayed their promoters by quantitative ChIP-PCR to examine RIN binding. All of the seven genes, which are involved in cell wall modification, aroma and flavor development, pathogen defense and transcriptional regulation during ripening, are targets of RIN, suggesting that RIN may control multiple diverse ripening processes. In particular, RIN directly regulates the expression of the ripening-associated transcription factors, CNR, TDR4 and a GRAS family gene, providing an important clue to elucidate the complicated transcriptional cascade for fruit ripening.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Transcriptoma/genética , Secuencia de Bases , Sitios de Unión , Etilenos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Estudios de Asociación Genética , Solanum lycopersicum/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos
10.
Biotechnol Lett ; 34(4): 763-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22160296

RESUMEN

Ethylene-responsive transcription factor (ERF) family genes, which are involved in regulation of metabolic pathways and/or are useful for metabolic engineering, were investigated in the cultured cells of Arabidopsis thaliana. The pectin content in the gelatinous precipitates after the ethanol precipitation of extracts derived from calli of a transgenic cell line, A17, overexpressing an ERF gene (At1g44830), increased in comparison with the control. Expression of genes involved in pectin biosynthesis was up-regulated in the A17 calli. Overexpression of the ERF gene coordinately activates the pectin biosynthetic pathway genes and increases the content of pectin. These results therefore will be useful as a genetic resource for engineering pectin biosynthesis in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/biosíntesis , Expresión Génica , Pectinas/biosíntesis , Proteínas de Plantas/biosíntesis , Vías Biosintéticas/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Plantas/genética
11.
BMC Plant Biol ; 11: 26, 2011 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-21276270

RESUMEN

BACKGROUND: During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. RESULTS: Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. CONCLUSIONS: The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own promoter suggests the presence of autoregulation for RIN expression. ChIP-based analyses identified a novel RIN-binding CArG-box site that harbors a gene associated with RIN expression in its flanking region. These findings clarify the crucial role of RIN in the transcriptional regulation of ripening initiation and progression.


Asunto(s)
Inmunoprecipitación de Cromatina , Frutas/crecimiento & desarrollo , Frutas/genética , Genes de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Secuencia de Bases , Sitios de Unión , Mapeo Cromosómico , Biología Computacional , ADN de Plantas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Unión Proteica
12.
Plant Sci ; 263: 219-225, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28818378

RESUMEN

Nitrogen (N) is a major macronutrient that is essential for plant growth. It is important for us to understand the key genes that are involved in the regulation of N utilization. In this study, we focused on a GARP-type transcription factor known as NSR1/MYR2, which has been reported to be induced under N-deficient conditions. Our results demonstrated that NSR1/MYR2 has a transcriptional repression activity and is specifically expressed in vascular tissues, especially in phloem throughout the plant under daily light-dark cycle regulation. The overexpression of NSR1/MYR2 delays nutrient starvation- and dark-triggered senescence in the mature leaves of excised whole aerial parts of Arabidopsis plants. Furthermore, the expression of asparagine synthetase 1 (ASN1), which plays an important role in N remobilization and reallocation, i.e. N reutilization, in Arabidopsis, is negatively regulated by NSR1/MYR2, since the expressions of NSR1/MYR2 and ASN1 were reciprocally regulated during the light-dark cycle and ASN1 expression was down-regulated in overexpressors of NSR1/MYR2 and up-regulated in T-DNA insertion mutants of NSR1/MYR2. Therefore, the present results suggest that NSR1/MYR2 plays a role in N reutilization as a negative regulator through controlling ASN1 expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Aspartatoamoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/economía , Proteínas de Arabidopsis/genética , Aspartatoamoníaco Ligasa/genética , Transporte Biológico , Floema/metabolismo , Fotoperiodo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética
13.
Plant Biotechnol (Tokyo) ; 33(4): 235-243, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31367181

RESUMEN

Identification of the factors involved in the regulation of senescence and the analysis of their function are important for both a biological understanding of the senescence mechanism and the improvement of agricultural productivity. In this study, we identified an ERF gene termed "ERF gene conferring Postharvest longevity Improvement 1" (EPI1) as a possible regulator of senescence in Arabidopsis. We found that EPI1 possesses transcriptional repression activity and that the transgenic plants overexpressing EPI1 and expressing its chimeric repressor, EPI1-SRDX, commonly suppressed the darkness-induced senescence in their excised aerial parts. These transgenic plants additionally maintained a high level of chlorophyll, even after the methyl jasmonate (MeJA) treatment, which stimulated senescence in the dark. In addition, we found that senescence-induced and -reduced genes are down- and upregulated, respectively, in the MeJA-treated transgenic plants under darkness. Our results suggest that EPI1 functions as a negative regulator of the dark-induced and JA-stimulated senescence.

14.
Biochim Biophys Acta ; 1679(3): 279-87, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15358520

RESUMEN

A putative elicitor responsive element with two W boxes (CTGACC/T) has been identified in the region between -125 and -69 of a tobacco class I basic chitinase gene CHN48. We generated transgenic tobacco calli that contained the -125/-69 region fused to a luciferase reporter gene. The expression of the reporter gene was induced upon treatment with an elicitor, xylanase from Trichoderma viride (TvX). This induction required protein kinase activity. We isolated three cDNA clones encoding DNA-binding proteins, designated as NtWRKY1, NtWRKY2, and NtWRKY4, from tobacco cultured cells. Gel mobility shift assays showed that in vitro translation products of NtWRKY1, NtWRKY2 and NtWRKY4 bound to W box of CHN48 gene. These NtWRKY proteins stimulated W box-mediated transcription of a luciferase reporter gene in the transient assay. In addition, the transactivation of W box-mediated transcription by NtWRKY1 and NtWRKY4 was enhanced in response to elicitor treatment, suggesting elicitor-induced posttranscriptional activation of these NtWRKYs. Northern blot analyses showed that mRNAs for NtWRKY1 and NtWRKY2 increased after treatment with the elicitor, whereas mRNAs for NtWRKY4 were expressed constitutively at a low level. These results suggested possible involvement of NtWRKYs in elicitor-responsive transcription of defense genes in tobacco.


Asunto(s)
Quitinasas/genética , Nicotiana/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Quitinasas/efectos de los fármacos , Quitinasas/metabolismo , Clonación Molecular , ADN Complementario , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endo-1,4-beta Xilanasas/farmacología , Hongos/química , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , ARN Mensajero , Elementos de Respuesta , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Activación Transcripcional
15.
Front Plant Sci ; 6: 442, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124769

RESUMEN

To shed unfertilized flowers or ripe fruits, many plant species develop a pedicel abscission zone (AZ), a specialized tissue that develops between the organ and the main body of the plant. Regulation of pedicel abscission is an important agricultural concern because pre-harvest abscission can reduce yields of fruit or grain crops, such as apples, rice, wheat, etc. Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Molecular genetic studies revealed that three MADS-box transcription factors interactively play a central role in pedicel AZ development. Transcriptome analyses identified activities involved in abscission and also found novel transcription factors that may regulate AZ activities. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species.

16.
Plant Physiol ; 140(2): 411-32, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16407444

RESUMEN

Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes.


Asunto(s)
Arabidopsis/genética , Familia de Multigenes/genética , Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mapeo Cromosómico , Biología Computacional , Secuencia Conservada , Evolución Molecular , Genómica , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción/clasificación
17.
Plant Cell Physiol ; 47(4): 554-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16452120

RESUMEN

In this study, we showed that overexpression of ethylene-responsive transcription factor (ERF) 2 activated the expression of endogenous genes that have the GCC box in their promoter region, in tobacco plants. These include not only a defense-related gene, CHN50, encoding class I basic chitinase, but also a transcriptional repressor gene, ERF3. In tobacco plants constitutively expressing ERF2:glucocorticoid receptor fusion protein, treatment with dexamethazone induced a rapid increase of ERF3 mRNA and a slow increase of CHN50 mRNA. These results suggest that an antagonistic interplay of ERF2 and ERF3 is involved in the transcriptional regulation of the class I basic chitinase genes in tobacco.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Nicotiana/genética , Factores de Transcripción/fisiología , Transcripción Genética , Quitinasas/genética , ADN de Plantas/análisis , ADN de Plantas/genética , Dexametasona/farmacología , Factores de Unión a la G-Box/genética , Factores de Unión a la G-Box/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regiones Promotoras Genéticas , ARN Mensajero/análisis , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología
18.
J Plant Res ; 119(4): 407-13, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16820983

RESUMEN

The analysis of expression patterns of transcription-factor genes will be the basis for a better understanding of their biological functions in plants. In this study, we designed and developed an oligo-DNA macroarray consisting of gene-specific probes of 60-65 nucleotides for 288 transcription-factor genes, which cover COL, DOF, ERF, and NAC family genes. To investigate transcription-factor genes that are cooperatively regulated by jasmonate and ethylene in arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants, we analyzed the expression profile of transcription-factor genes using the oligo-DNA macroarray technique in arabidopsis plants treated with methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid. Then, transcript levels of candidate genes-which were selected based on the result of macroarray analysis-were evaluated by the quantitative real-time RT-PCR method. Finally, we identified an ERF family gene that is cooperatively regulated by both hormones, and designated as cooperatively regulated by ethylene and jasmonate 1 (CEJ1).


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ciclopentanos/farmacología , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA