Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Cells ; 14(5): 539-54, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19371376

RESUMEN

Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common beta-(Amk2) and gamma-(Cbs2) subunits.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efectos de los fármacos , Glucosa/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Aminoácidos , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , División Celular/efectos de los fármacos , Fase G2/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Datos de Secuencia Molecular , Ácido Ocadaico/farmacología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Supresión Genética , Temperatura
2.
Curr Biol ; 16(16): 1627-35, 2006 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16920624

RESUMEN

Shortened kinetochore microtubules take separated chromatids to the opposing spindle poles in anaphase. Fission yeast Dis1 belongs to the Dis1/XMAP215/TOG family that is required for proper microtubule dynamics. Here, we report that Dis1is regulated by Cdc2 phosphorylation and that this mitotic phosphorylation ensures the fidelity of chromosome segregation. Whereas mutants Dis1(6A) and Dis1(6E) that substitute all of the six Cdc2 sites for Ala or Glu, respectively, produce colonies at 22 degrees C-36 degrees C, Dis1(6A) but not Dis1(6E) loses a minichromosome and reveals aberrant chromosome segregation at significant frequencies. Dis1(WT) is recruited to two regions of the mitotic spindle: kinetochores (possibly also kinetochore microtubules) in metaphase and the pole-to-pole microtubule lattice in anaphase. Mutant Dis1(6E) preferentially binds to metaphase kinetochores, whereas Dis1(6A), which is located along microtubules, fails in its accumulation at kinetochores. Dis1(6A) displays synthetic lethality with the mis12-537, which is a mutant that compromises kinetochore function. Dis1(6E) mimics the Cdc2-phosphorylated form of Dis1(WT), whereas Dis1(6A) can partially rescue the phenotype resulting form deletion of Mtc1/Alp14, another XMAP215-like protein. In anaphase, dephosphorylated Dis1 and Dis1(6A), but not Dis1(6E), move to the spindle microtubule lattice near the SPBs. Cdc2 thus directly phosphorylates Dis1, and this phosphorylation regulates Dis1 localization in both metaphase and anaphase and ensures high-fidelity segregation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Segregación Cromosómica/fisiología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Fosforilación , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética
3.
Open Biol ; 8(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29593117

RESUMEN

Rapamycin inhibits TOR (target of rapamycin) kinase, and is being used clinically to treat various diseases ranging from cancers to fibrodysplasia ossificans progressiva. To understand rapamycin mechanisms of action more comprehensively, 1014 temperature-sensitive (ts) fission yeast (Schizosaccharomyces pombe) mutants were screened in order to isolate strains in which the ts phenotype was rescued by rapamycin. Rapamycin-rescued 45 strains, among which 12 genes responsible for temperature sensitivity were identified. These genes are involved in stress-activated protein kinase (SAPK) signalling, chromatin regulation, vesicle transport, and CoA- and mevalonate-related lipid metabolism. Subsequent metabolome analyses revealed that rapamycin upregulated stress-responsive metabolites, while it downregulated purine biosynthesis intermediates and nucleotide derivatives. Rapamycin alleviated abnormalities in cell growth and cell division caused by sty1 mutants (Δsty1) of SAPK. Notably, in Δsty1, rapamycin reduced greater than 75% of overproduced metabolites (greater than 2× WT), like purine biosynthesis intermediates and nucleotide derivatives, to WT levels. This suggests that these compounds may be the points at which the SAPK/TOR balance regulates continuous cell proliferation. Rapamycin might be therapeutically useful for specific defects of these gene functions.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Schizosaccharomyces/crecimiento & desarrollo , Sirolimus/farmacología , Transporte Biológico/efectos de los fármacos , Cromatina/metabolismo , Coenzima A/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Metaboloma , Ácido Mevalónico/metabolismo , Schizosaccharomyces/genética , Transducción de Señal , Temperatura
4.
DNA Repair (Amst) ; 1(10): 833-45, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12531030

RESUMEN

We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient cells but not the rhp4B-deficient cells are sensitive to UV irradiation. However, the disruption of both rhp4A and rhp4B resulted in UV sensitivity that was greater than that of the rhp4A-deficient cells, revealing that Rhp4B plays a role in DNA repair on its own. Fission yeast has two pathways to repair photolesions on DNA, namely, nucleotide excision repair (NER) and UV-damaged DNA endonuclease-dependent excision repair (UVER). Studies with the NER-deficient rad13 and the UVER-deficient (Delta)uvde mutants showed the two rhp4 genes are involved in NER and not UVER. Assessment of the ability of the various mutants to remove cyclobutane pyrimidine dimers (CPDs) from the rbp2 gene locus indicated that Rhp4A is involved in the preferential repair of lesions on the transcribed DNA strand and plays the major role in fission yeast NER. Rhp4B in contrast acts as an accessory protein in non-transcribed strand (NTS) repair.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Reparación del ADN , ADN de Hongos/efectos de la radiación , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/efectos de la radiación , Transglutaminasas/fisiología , Cartilla de ADN/química , Marcación de Gen , Mutación , Reacción en Cadena de la Polimerasa , Saccharomycetales/genética , Eliminación de Secuencia , Transcripción Genética , Rayos Ultravioleta
5.
Open Biol ; 2(9): 120117, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23091701

RESUMEN

Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA.


Asunto(s)
Coenzima A/biosíntesis , Histonas/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Acetilación , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/metabolismo , Genes Fúngicos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mitosis , Datos de Secuencia Molecular , Mutación , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Tolerancia a Radiación , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Rayos Ultravioleta
6.
Genome Res ; 19(6): 1077-83, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19423874

RESUMEN

Fission yeast is an important model for epigenetic studies due to the ease with which genetic mutants can be isolated. However, it can be difficult to complement epigenetic phenotypes with genomic libraries in order to identify the genes responsible. This is because epigenetic phenotypes are typically unstable, and can prohibit complementation if silencing cannot be reestablished. Here we have resequenced the fission yeast genome following mutagenesis to readily identify a novel mutant involved in heterochromatic silencing. Candidate genes were identified as functional single base changes linked to the mutation, which were then reconstituted in a wild-type strain to recapitulate the mutant phenotype. By this procedure we identified a weak allele of ubc4, which encodes an essential E2 ubiquitin ligase, as responsible for the swi*603 mutant phenotype. In combination with a large collection of mutants and suppressor plasmids, next-generation genomic resequencing promises to dramatically enhance the power of yeast genetics, permitting the isolation of subtle alleles of essential genes, alleles with quantitative effects, and enhancers and suppressors of heterochromatic silencing.


Asunto(s)
Genoma Fúngico/genética , Mutación , Schizosaccharomyces/genética , Análisis de Secuencia de ADN/métodos , Sustitución de Aminoácidos , Mapeo Cromosómico/métodos , Cromosomas Fúngicos/genética , Epigénesis Genética , Proteínas Fúngicas/genética , Genes Esenciales , Fenotipo , Polimorfismo de Nucleótido Simple , Enzimas Ubiquitina-Conjugadoras/genética
7.
J Cell Sci ; 122(Pt 9): 1418-29, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19366728

RESUMEN

Transition from proliferation to quiescence brings about extensive changes in cellular behavior and structure. However, the genes that are crucial for establishing and/or maintaining quiescence are largely unknown. The fission yeast Schizosaccharomyces pombe is an excellent model in which to study this problem, because it becomes quiescent under nitrogen starvation. Here, we characterize 610 temperature-sensitive mutants, and identify 33 genes that are required for entry into and maintenance of quiescence. These genes cover a broad range of cellular functions in the cytoplasm, membrane and nucleus. They encode proteins for stress-responsive and cell-cycle kinase signaling pathways, for actin-bound and osmo-controlling endosome formation, for RNA transcription, splicing and ribosome biogenesis, for chromatin silencing, for biosynthesis of lipids and ATP, for cell-wall and membrane morphogenesis, and for protein trafficking and vesicle fusion. We specifically highlight Fcp1, a CTD phosphatase of RNA polymerase II, which differentially affects the transcription of genes that are involved in quiescence and proliferation. We propose that the transcriptional role of Fcp1 is central in differentiating quiescence from proliferation.


Asunto(s)
Ciclo Celular/genética , Proliferación Celular , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Adenosina Trifosfato/metabolismo , Biomarcadores/metabolismo , División Celular/fisiología , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Temperatura , Vacuolas/metabolismo , Vacuolas/ultraestructura
8.
Genes Cells ; 12(12): 1357-70, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18076573

RESUMEN

Nutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287. This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin. The L2048S substitution mutation in the catalytic domain in close proximity to the adenine base of ATP is unique as it is the sole known genetic cause of rapamycin hypersensitivity. Localization of Tor2 was speckled in the vegetative cytoplasm, and both speckled and membranous in the arrested cell cytoplasm. Using mass spectroscopic analysis, we identified six subunits (Tco89, Bit61, Toc1, Tel2, Tti1 and Cka1) that, in addition to the six previously identified subunits (Tor1, Tor2, Mip1/Raptor, Ste20/Rictor, Sin1/Avo1 and Wat1/Lst8), comprise the TOR complexes (TORCs). All of the subunits so far examined are multiply phosphorylated. Tel2 bound to Tti1 interacts with various phosphatidyl inositol kinase (PIK)-related kinases including Tra1, Tra2 and Rad3, as well as Tor1 and Tor2. Schizosaccharomyces pombe TORCs should thus be functionally redundant and might be broadly regulated through different subunits that are either common or specific to the two TORCs, or even common to various PIK-related kinases. Functional redundancy of the TORCs may explain the rapamycin hypersensitivity of tor2-287.


Asunto(s)
Fosfatidilinositol 3-Quinasas/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Sirolimus/farmacología , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
9.
Genes Cells ; 7(11): 1113-24, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12390246

RESUMEN

BACKGROUND: The separase-securin complex is required for anaphase. Separase activated by securin destruction cleaves the cohesin subunit Scc1/Rad21 enriched in kinetochores. Fission yeast Cut1/separase resides in interphase cytoplasm and mobilizes to the spindle and the spindle pole bodies (SPBs) in mitosis, while Cut2/securin remains in the nucleus from interphase to metaphase, and temporarily locates at the short spindle. RESULTS: We here report a novel SPB-led dynamic nuclear movement in fission yeast, when the Cut1 C-terminal fragment is over-expressed. The tip of the pointed nucleus contained both SPB and centromeric DNA, and rapidly moved along the bundled cytoplasmic microtubules. The same pointed nucleus was produced when the human separase C-fragment was over-expressed. The pointed nuclear formation did not require the protease site of separase, but required the conserved C-terminus and a microtubule- and kinetochore-binding protein Mtc1/Alp14, a homologue of frog XMAP215 and budding yeast Stu2. The movement-inducing C-fragment should be cytoplasmic, as the pointed nucleus was abolished when the fragment contained the NLS (nuclear localization signal). CONCLUSIONS: Overproduced separase C-fragment abolishes correct SPB-positioning in interphase. Resulting pointed nuclear formation (alternatively called 'pigtail movement') requires cytoplasmic microtubules and Mtc1/Alp14.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Endopeptidasas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/enzimología , Huso Acromático/metabolismo , Dominio Catalítico/genética , Secuencia Conservada , Interfase/fisiología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutación , Membrana Nuclear/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Separasa
10.
J Immunol ; 169(10): 5744-53, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12421954

RESUMEN

The ability to predict MHC-binding peptides remains limited despite ever expanding demands for specific immunotherapy against cancers, infectious diseases, and autoimmune disorders. Previous analyses revealed position-specific preference of amino acids but failed to detect sequence patterns. Efforts to use computational analysis to identify sequence patterns have been hampered by the insufficiency of the number/quality of the peptide binding data. We propose here a dynamic experiment design to search for sequence patterns that are common to the MHC class I-binding peptides. The method is based on a committee-based framework of query learning using hidden Markov models as its component algorithm. It enables a comprehensive search of a large variety (20(9)) of peptides with a small number of experiments. The learning was conducted in seven rounds of feedback loops, in which our computational method was used to determine the next set of peptides to be analyzed based on the results of the earlier iterations. After these training cycles, the algorithm enabled a real number prediction of MHC binding peptides with an accuracy surpassing that of the hitherto best performing positional scanning method.


Asunto(s)
Biología Computacional/métodos , Antígenos de Histocompatibilidad Clase I/metabolismo , Oligopéptidos/metabolismo , Algoritmos , Animales , Línea Celular , Biología Computacional/estadística & datos numéricos , Bases de Datos Genéticas , Retroalimentación , Predicción , Antígenos H-2/química , Antígenos H-2/metabolismo , Antígeno de Histocompatibilidad H-2D , Antígenos de Histocompatibilidad Clase I/química , Cadenas de Markov , Ratones , Oligopéptidos/síntesis química , Unión Proteica
11.
J Biol Phys ; 28(2): 183-94, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23345768

RESUMEN

A query learning algorithm based on hidden Markov models (HMMs) isdeveloped to design experiments for string analysis and prediction of MHCclass I binding peptides. Query learning is introduced to aim at reducingthe number of peptide binding data for training of HMMs. A multiple numberof HMMs, which will collectively serve as a committee, are trained withbinding data and used for prediction in real-number values. The universeof peptides is randomly sampled and subjected to judgement by the HMMs.Peptides whose prediction is least consistent among committee HMMs aretested by experiment. By iterating the feedback cycle of computationalanalysis and experiment the most wanted information is effectivelyextracted. After 7 rounds of active learning with 181 peptides in all,predictive performance of the algorithm surpassed the so far bestperforming matrix based prediction. Moreover, by combining the bothmethods binder peptides (log Kd < -6) could be predicted with84% accuracy. Parameter distribution of the HMMs that can be inspectedvisually after training further offers a glimpse of dynamic specificity ofthe MHC molecules.

12.
Genes Cells ; 9(11): 1069-82, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15507118

RESUMEN

The small genome of fission yeast Schizosaccharomyces pombe contains 4824 predicted genes and gene disruption suggests that approximately 850 are essential for viability. To obtain information on interactions among genes required for chromosome segregation, an approach called Strategy B was taken using mass transformation of the 1015 temperature-sensitive (ts) mutants that were made by random mutagenesis and transformed by plasmids carrying the genes for securin, separase, condensin, cohesin, kinetochore microtubule-binding proteins Dis1/Mtc1 or histones. Mutant strains whose phenotypes were either suppressed or inhibited by plasmids were selected. Each plasmid interacted positively or negatively with the average 14 strains. Identification of the mutant gene products by cloning revealed many hitherto unknown interactions. The interactive networks of segregation therefore may consist of genes with a variety of functions. For example, separase/Cut1 interacts with Cdc48/p97/VCP, which stabilizes securin and separase. Surprisingly, S. pombe cdc48 mutants displayed the mitotic phenotype highly similar to separase/cut1 mutants. This approach also provides a novel way of mutant isolation, resulting in two histone H2B strains and a cohesion mutant with a new phenotype.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Endopeptidasas/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Histonas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Secuencia de Bases , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos , Cartilla de ADN , Microscopía Fluorescente , Complejos Multiproteicos , Plásmidos , Separasa , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA