Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 71(7): 558-565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394605

RESUMEN

Protein kinase CK2 (CK2) is involved in the suppression of gene expression, protein synthesis, cell proliferation, and apoptosis, thus making it a target protein for the development of therapeutics toward cancer, nephritis, and coronavirus disease 2019. Using the solvent dipole ordering-based method for virtual screening, we identified and designed new candidate CK2α inhibitors containing purine scaffolds. Virtual docking experiments supported by experimental structure-activity relationship studies identified the importance of the 4-carboxyphenyl group at the 2-position, a carboxamide group at the 6-position, and an electron-rich phenyl group at the 9-position of the purine scaffold. Docking studies based on the crystal structures of CK2α and inhibitor (PDBID: 5B0X) successfully predicted the binding mode of 4-(6-carbamoyl-8-oxo-9-phenyl-8,9-dihydro-7H-purin-2-yl) benzoic acid (11), and the results were used to design stronger small molecule targets for CK2α inhibition. Interaction energy analysis suggested that 11 bound around the hinge region without the water molecule (W1) near Trp176 and Glu81 that is frequently reported in crystal structures of CK2α inhibitor complexes. X-ray crystallographic data for 11 bound to CK2α was in very good agreement with the docking experiments, and consistent with activity. From the structure-activity relationship (SAR) studies presented here, 4-(6-Carbamoyl-9-(4-(dimethylamino)phenyl)-8-oxo-8,9-dihydro-7H-purin-2-yl) benzoic acid (12) was identified as an improved active purine-based CK2α inhibitor with an IC50 of 4.3 µM. These active compounds with an unusual binding mode are expected to inspire new CK2α inhibitors and the development of therapeutics targeting CK2 inhibition.


Asunto(s)
COVID-19 , Inhibidores de Proteínas Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Relación Estructura-Actividad , Ácido Benzoico , Purinas
2.
RSC Med Chem ; 15(4): 1274-1282, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665825

RESUMEN

We recently reported novel purine-based CK2α inhibitors using the solvent ordering-based method as virtual screening. Among these, the X-ray crystal structure of a complex with CK2α was determined. The results showed that the crystalline water molecules observed in many previously reported complex structures of CK2α and its inhibitors had been eliminated. We then proposed a structure-based drug design. Since the removal of water molecules would be detrimental to inhibitor binding, new groups of compounds were designed by changing the position of the carboxy group located at the point where a water molecule would be present so as not to eliminate it. Compounds with (E)-2-carboxyethenyl and 3-carboxyphenyl substituted at the 2-position on the purine scaffold showed much higher inhibitory potency than 4-carboxyphenyl derivatives. Furthermore, in the presence of a 4-fluorophenyl group at the 9-position on the purine scaffold, the inhibitory activity of the 3-carboxyphenyl derivative against CK2α was 0.18 µM, a 167-fold improvement compared to the 4-carboxyphenyl derivative. The strategy of leaving crystalline water can significantly increase inhibitory activity.

3.
Int J Biol Macromol ; 151: 1322-1331, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31751746

RESUMEN

Chitin, an N-acetyl-D-glucosamine polymer, has been known to enhance plant growth. However, this polysaccharide has not been used extensively in experimental work or agriculture practices because its hydrophobic nature makes it difficult to handle. Chitin nanofiber (CNF), which disperses well in water, can feasibly be used to evaluate the effect of chitin on the promotion of plant growth. In this study, we analysed the contents of inorganic elements and global gene expression to obtain an overview of the growth-promoting action of chitins in plants. Significant increases in the biomass of aerial parts and concentration of chlorophyll following treatment with CNF or short-chain chitin oligomers were observed in tomatoes that were hydroponically cultivated under ultralow nutrient concentrations. The results of the quantification of inorganic elements demonstrated that concentrations of nitrogen and carbon significantly increased in whole tomato plant under chitin treatment. Transcriptome analysis of CNF-treated tomatoes by RNA sequencing showed that the expression levels of genes related to nitrogen acquisition and assimilation, nutrient allocation and photosynthesis were altered. These results indicate that the growth-promoting action of chitin treatment is caused by an improvement in nitrogen uptake efficiency and that CNF could be a useful material for nutrient management in tomato production.


Asunto(s)
Quitina/metabolismo , Nanofibras , Nitrógeno/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Biomasa , Carbono/metabolismo , Quitina/química , Quitina/farmacología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/efectos de los fármacos , Nanofibras/química , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA