Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 47(2): 253-66, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22727665

RESUMEN

Translational control of mRNAs in dendrites is essential for certain forms of synaptic plasticity and learning and memory. CPEB is an RNA-binding protein that regulates local translation in dendrites. Here, we identify poly(A) polymerase Gld2, deadenylase PARN, and translation inhibitory factor neuroguidin (Ngd) as components of a dendritic CPEB-associated polyadenylation apparatus. Synaptic stimulation induces phosphorylation of CPEB, PARN expulsion from the ribonucleoprotein complex, and polyadenylation in dendrites. A screen for mRNAs whose polyadenylation is altered by Gld2 depletion identified >100 transcripts including one encoding NR2A, an NMDA receptor subunit. shRNA depletion studies demonstrate that Gld2 promotes and Ngd inhibits dendritic NR2A expression. Finally, shRNA-mediated depletion of Gld2 in vivo attenuates protein synthesis-dependent long-term potentiation (LTP) at hippocampal dentate gyrus synapses; conversely, Ngd depletion enhances LTP. These results identify a pivotal role for polyadenylation and the opposing effects of Gld2 and Ngd in hippocampal synaptic plasticity.


Asunto(s)
Citoplasma/metabolismo , Plasticidad Neuronal , Biosíntesis de Proteínas , Transmisión Sináptica , Animales , Dendritas/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Poliadenilación , Polinucleotido Adenililtransferasa/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/metabolismo , Ribonucleoproteínas/metabolismo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
2.
Mol Cell ; 42(5): 673-88, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658607

RESUMEN

The molecular mechanism for how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by gp1 mGluR signaling. Inhibition of miR-125a increased PSD-95 levels in dendrites and altered dendritic spine morphology. Bidirectional control of PSD-95 expression depends on miR-125a and FMRP phosphorylation status. miR-125a levels at synapses and its association with AGO2 are reduced in Fmr1 KO. FMRP phosphorylation promotes the formation of an AGO2-miR-125a inhibitory complex on PSD-95 mRNA, whereas mGluR signaling of translation requires FMRP dephosphorylation and release of AGO2 from the mRNA. These findings reveal a mechanism whereby FMRP phosphorylation provides a reversible switch for AGO2 and microRNA to selectively regulate mRNA translation at synapses in response to receptor activation.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , MicroARNs/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Proteínas Argonautas , Dendritas/metabolismo , Homólogo 4 de la Proteína Discs Large , Factor 2 Eucariótico de Iniciación/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Guanilato-Quinasas , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
3.
J Neurosci ; 32(8): 2582-7, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22357842

RESUMEN

Fragile X syndrome is caused by the loss of fragile X mental retardation protein (FMRP), which represses and reversibly regulates the translation of a subset of mRNAs in dendrites. Protein synthesis can be rapidly stimulated by mGluR-induced and protein phosphatase 2a (PP2A)-mediated dephosphorylation of FMRP, which is coupled to the dissociation of FMRP and target mRNAs from miRNA-induced silencing complexes. Here, we report the rapid ubiquitination and ubiquitin proteasome system (UPS)-mediated degradation of FMRP in dendrites upon DHPG (3,5-dihydroxyphenylglycine) stimulation in cultured rat neurons. Using inhibitors to PP2A and FMRP phosphomutants, degradation of FMRP was observed to depend on its prior dephosphorylation. Translational induction of an FMRP target, postsynaptic density-95 mRNA, required both PP2A and UPS. Thus, control of FMRP levels at the synapse by dephosphorylation-induced and UPS-mediated degradation provides a mode to regulate protein synthesis.


Asunto(s)
Dendritas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/citología , Receptores de Glutamato Metabotrópico/metabolismo , Ubiquitinación/fisiología , Análisis de Varianza , Animales , Ácidos Borónicos/farmacología , Bortezomib , Células Cultivadas , Dendritas/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large , Proteínas de Drosophila/metabolismo , Embrión de Mamíferos , Inhibidores Enzimáticos , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leupeptinas/farmacología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Mutación/genética , Neuronas/metabolismo , Ácido Ocadaico/farmacología , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Biosíntesis de Proteínas , Pirazinas/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Serina/genética , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transfección , Ubiquitinación/efectos de los fármacos
4.
J Neurosci ; 32(43): 15133-41, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100434

RESUMEN

Directed transport of the mRNA binding protein, zipcode binding protein1 (ZBP1), into developing axons is believed to play an important role in mRNA localization and local protein synthesis. The role of molecular motors in this process is unclear. We elucidated a role for myosin Va (MyoVa) to modulate the axonal localization and transport of ZBP1 in axons. Using cultured rat hippocampal neurons, ZBP1 colocalized with MyoVa in axons and growth cones. Interaction of MyoVa with ZBP1 was evident by coimmunoprecipitation of endogenous and overexpressed proteins. Inhibition of MyoVa function with the globular tail domain (GTD) of MyoVa protein or short hairpin RNA led to an accumulation of ZBP1 in axons. Live cell imaging of mCherryZBP1 in neurons expressing GTD showed an increase in the number of motile particles, run length, and stimulated anterograde moving ZBP1 particles, suggesting that MyoVa controls availability of ZBP1 for microtubule-dependent transport. These findings suggest a novel regulatory role for MyoVa in the transport of ZBP1 within axons.


Asunto(s)
Axones/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Femenino , Conos de Crecimiento/fisiología , Hipocampo/citología , Proteínas Luminiscentes/genética , Masculino , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Dinámicas no Lineales , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Factores de Tiempo , Transfección/métodos
5.
Front Mol Neurosci ; 12: 64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949027

RESUMEN

Dendritic growth and branching are highly regulated processes and are essential for establishing proper neuronal connectivity. There is a critical phase of early dendrite development when these are heavily regulated by external cues such as trophic factors. Brain-derived neurotrophic factor (BDNF) is a major trophic factor known to enhance dendrite growth in cortical neurons, but the molecular underpinnings of this response are not completely understood. We have identified that BDNF induced translational regulation is an important mechanism governing dendrite development in cultured rat cortical neurons. We show that BDNF treatment for 1 h in young neurons leads to translational up-regulation of an important actin regulatory protein LIM domain kinase 1 (Limk1), increasing its level locally in the dendrites. Limk1 is a member of serine/threonine (Ser/Thr) family kinases downstream of the Rho-GTPase pathway. BDNF induced increase in Limk1 levels leads to increased phosphorylation of its target protein cofilin1. We observed that these changes are maintained for long durations of up to 48 h and are mediating increase in number of primary dendrites and total dendrite length. Thus, we show that BDNF induced protein synthesis leads to fine-tuning of the actin cytoskeletal reassembly and thereby mediate dendrite development.

6.
J Neurosci ; 27(52): 14349-57, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18160642

RESUMEN

Fragile X syndrome is a common form of inherited mental retardation and is caused by loss of fragile X mental retardation protein (FMRP), a selective RNA-binding protein that influences the translation of target messages. Here, we identify protein phosphatase 2A (PP2A) as an FMRP phosphatase and report rapid FMRP dephosphorylation after immediate group I metabotropic glutamate receptor (mGluR) stimulation (<1 min) in neurons caused by enhanced PP2A enzymatic activity. In contrast, extended mGluR activation (1-5 min) resulted in mammalian target of rapamycin (mTOR)-mediated PP2A suppression and FMRP rephosphorylation. These activity-dependent changes in FMRP phosphorylation were also observed in dendrites and showed a temporal correlation with the translational profile of select FMRP target transcripts. Collectively, these data reveal an immediate-early signaling pathway linking group I mGluR activity to rapid FMRP phosphorylation dynamics mediated by mTOR and PP2A.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Animales , Células Cultivadas , Embrión de Mamíferos , Activación Enzimática/efectos de los fármacos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Hipocampo/citología , Inmunoprecipitación/métodos , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosforilación , Proteína Fosfatasa 2/genética , Piridinas/farmacología , Ratas , Transducción de Señal , Factores de Tiempo , Transfección/métodos
7.
Nat Med ; 19(11): 1473-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24141422

RESUMEN

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice rescued working memory deficits, demonstrating reversal of this FXS phenotype. Finally, we find that FMRP and CPEB1 balance translation at the level of polypeptide elongation. Our results suggest that disruption of translational homeostasis is causal for FXS and that the maintenance of this homeostasis by FMRP and CPEB1 is necessary for normal neurologic function.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/fisiología , Regiones no Traducidas 3' , Animales , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/psicología , Hipocampo/fisiopatología , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
J Biol Chem ; 283(27): 18478-82, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18474609

RESUMEN

Fragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A. Further, the loss of hippocampal S6K1 and the subsequent absence of phospho-FMRP mimic FMRP loss in the increased expression of SAPAP3, a synapse-associated FMRP target mRNA. Together these data reveal a S6K1-PP2A signaling module regulating FMRP function and place FMRP phosphorylation in the mGluR-triggered signaling cascade required for protein-synthesis-dependent synaptic plasticity.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Neuronas/patología , Fosforilación , Biosíntesis de Proteínas/genética , Proteínas Quinasas/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR
9.
Proc Natl Acad Sci U S A ; 104(39): 15537-42, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17881561

RESUMEN

Fragile X syndrome (FXS), a common inherited form of mental retardation, is caused by the functional absence of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates the translation of specific mRNAs at synapses. Altered synaptic plasticity has been described in a mouse FXS model. However, the mechanism by which the loss of FMRP alters synaptic function, and subsequently causes the mental impairment, is unknown. Here, in cultured hippocampal neurons, we used siRNAs against Fmr1 to demonstrate that a reduction of FMRP in dendrites leads to an increase in internalization of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit, GluR1, in dendrites. This abnormal AMPAR trafficking was caused by spontaneous action potential-driven network activity without synaptic stimulation by an exogenous agonist and was rescued by 2-methyl-6-phenylethynyl-pyridine (MPEP), an mGluR5-specific inverse agonist. Because AMPAR internalization depends on local protein synthesis after mGluR5 stimulation, FMRP, a negative regulator of translation, may be viewed as a counterbalancing signal, wherein the absence of FMRP leads to an apparent excess of mGluR5 signaling in dendrites. Because AMPAR trafficking is a driving process for synaptic plasticity underlying learning and memory, our data suggest that hypersensitive AMPAR internalization in response to excess mGluR signaling may represent a principal cellular defect in FXS, which may be corrected by using mGluR antagonists.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , Discapacidad Intelectual/genética , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipocampo/metabolismo , Microscopía Confocal , Neuronas/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo
10.
J Biol Chem ; 280(47): 38957-68, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16179355

RESUMEN

Myosin IXb (Myo9b) was reported to be a single-headed, processive myosin. In its head domain it contains an N-terminal extension and a large loop 2 insertion that are specific for class IX myosins. We characterized the kinetic properties of purified, recombinant rat Myo9b, and we compared them with those of Myo9b mutants that had either the N-terminal extension or the loop 2 insertion deleted. Unlike other processive myosins, Myo9b exhibited a low affinity for ADP, and ADP release was not rate-limiting in the ATPase cycle. Myo9b is the first myosin for which ATP hydrolysis or an isomerization step after ATP binding is rate-limiting. Myo9b-ATP appeared to be in a conformation with a weak affinity for actin as determined by pyrene-actin fluorescence. However, in actin cosedimentation experiments, a subpopulation of Myo9b-ATP bound F-actin with a remarkably high affinity. Deletion of the N-terminal extension reduced actin affinity and increased the rate of nucleotide binding. Deletion of the loop 2 insertion reduced the actin affinity and altered the communication between actin and nucleotide-binding sites.


Asunto(s)
Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Línea Celular , ADN Complementario/genética , Técnicas In Vitro , Cinética , Modelos Biológicos , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Miosinas/genética , Unión Proteica , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA