Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small ; 19(8): e2205881, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504329

RESUMEN

Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS2 )@vanadium sulfide (VS2 ) and tungsten sulfide (WS2 )@VS2  hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS2 @VS2  and WS2 @VS2  electrodes exhibit high specific capacitances of 513 and 615 F g- 1 , respectively, at an applied current of 2.5 A g- 1  by the three-electrode configuration. The asymmetric device fabricated using WS2 @VS2  electrode exhibits a high specific capacitance of 222 F g- 1  at an applied current of 2.5 A g- 1  with the specific energy of 52 Wh kg- 1  at a specific power of 1 kW kg- 1 . For HER, the WS2 @VS2  catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm- 2 , a Tafel slope of 39 mV dec-1 , and an exchange current density of 1.73 mA cm- 2 . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS2 @VS2  and WS2 @VS2  heterostructures.

2.
Nano Lett ; 20(6): 4337-4345, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32369373

RESUMEN

Owing to their high Li+ conductivities, mechanical sinterability, and solution processability, sulfide Li argyrodites have attracted much attention as enablers in the development of high-performance all-solid-state batteries with practicability. However, solution-processable Li argyrodites have been developed only for a composition of Li6PS5X (X = Cl, Br, I) with insufficiently high Li+ conductivities (∼10-4 S cm-1). Herein, we report the highest Li+ conductivity of 0.54 mS cm-1 at 30 °C (Li6.5P0.5Ge0.5S5I) for solution-processable iodine-based Li argyrodites. A comparative investigation of three iodine-based argyrodites of unsubstituted and Ge- and Sn-substituted solution-processed Li6PS5I with varied heat-treatment temperature elucidates the effect of microstructural evolution on Li+ conductivity. Notably, local nanostructures consisting of argyrodite nanocrystallites in solution-processed Li6.5P0.5Ge0.5S5I have been directly captured by cryogenic transmission electron microscopy, which is a first for sulfide solid electrolyte materials. Specifically, the promising electrochemical performances of all-solid-state batteries at 30 °C employing LiCoO2 electrodes tailored by the infiltration of Li6.5P0.5Ge0.5S5I-ethanol solutions are successfully demonstrated.

3.
Small ; 12(18): 2510-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27008436

RESUMEN

Tin sulfide (SnS) 3D flowers containing hierarchical nanosheet subunits are synthesized using a simple polyol process. The Li ion cells incorporating SnS 3D flowers exhibit an excellent rate capability, as well as good cycling stability, compared to SnS bulks and Sn nanoparticles. These desirable properties can be attributed to their unique morphology having not only large surface reaction area but also enough space between individual 2D nanosheets, which alleviates the pulverization of SnS.

4.
J Am Chem Soc ; 136(17): 6385-94, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24678996

RESUMEN

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.

5.
Nat Mater ; 12(12): 1130-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24185759

RESUMEN

Metal fluorides/oxides (MF(x)/M(x)O(y)) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.

6.
Inorg Chem ; 53(13): 6585-95, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24914731

RESUMEN

Lithium iron borate (LiFeBO3) has a high theoretical specific capacity (220 mAh/g), which is competitive with leading cathode candidates for next-generation lithium-ion batteries. However, a major factor making it difficult to fully access this capacity is a competing oxidative process that leads to degradation of the LiFeBO3 structure. The pristine, delithiated, and degraded phases of LiFeBO3 share a common framework with a cell volume that varies by less than 2%, making it difficult to resolve the nature of the delithiation and degradation mechanisms by conventional X-ray powder diffraction studies. A comprehensive study of the structural evolution of LiFeBO3 during (de)lithiation and degradation was therefore carried out using a wide array of bulk and local structural characterization techniques, both in situ and ex situ, with complementary electrochemical studies. Delithiation of LiFeBO3 starts with the production of LitFeBO3 (t ≈ 0.5) through a two-phase reaction, and the subsequent delithiation of this phase to form Lit-xFeBO3 (x < 0.5). However, the large overpotential needed to drive the initial two-phase delithiation reaction results in the simultaneous observation of further delithiated solid-solution products of Lit-xFeBO3 under normal conditions of electrochemical cycling. The degradation of LiFeBO3 also results in oxidation to produce a Li-deficient phase D-LidFeBO3 (d ≈ 0.5, based on the observed Fe valence of ∼2.5+). However, it is shown through synchrotron X-ray diffraction, neutron diffraction, and high-resolution transmission electron microscopy studies that the degradation process results in an irreversible disordering of Fe onto the Li site, resulting in the formation of a distinct degraded phase, which cannot be electrochemically converted back to LiFeBO3 at room temperature. The Li-containing degraded phase cannot be fully delithiated, but it can reversibly cycle Li (D-Lid+yFeBO3) at a thermodynamic potential of ∼1.8 V that is substantially reduced relative to the pristine phase (∼2.8 V).

7.
Gels ; 10(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391452

RESUMEN

Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.

8.
Gels ; 10(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920928

RESUMEN

At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.

9.
Gels ; 10(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39330165

RESUMEN

The rapid expansion of flexible and wearable electronics has necessitated a focus on ensuring their safety and operational reliability. Gel polymer electrolytes (GPEs) have become preferred alternatives to traditional liquid electrolytes, offering enhanced safety features and adaptability to the design requirements of flexible lithium-ion batteries. This review provides a comprehensive and critical overview of recent advancements in GPE technology, highlighting significant improvements in its physicochemical properties, which contribute to superior long-term cycling stability and high-rate capacity compared with traditional organic liquid electrolytes. Special attention is given to the development of smart GPEs endowed with advanced functionalities such as self-protection, thermotolerance, and self-healing properties, which further enhance battery safety and reliability. This review also critically examines the application of GPEs in high-energy cathode materials, including lithium nickel cobalt manganese (NCM), lithium nickel cobalt aluminum (NCA), and thermally stable lithium iron phosphate (LiFePO4). Despite the advancements, several challenges in GPE development remain unresolved, such as improving ionic conductivity at low temperatures and ensuring mechanical integrity and interfacial compatibility. This review concludes by outlining future research directions and the remaining technical hurdles, providing valuable insights to guide ongoing and future efforts in the field of GPEs for lithium-ion batteries, with a particular emphasis on applications in high-energy and thermally stable cathodes.

10.
ACS Appl Mater Interfaces ; 16(8): 10104-10115, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38361321

RESUMEN

Hierarchical porous nanowire-like MoS2/CoNiO2 nanohybrids were synthesized via the hydrothermal process. CoNiO2 nanowires were selected due to the edge site, high surface/volume ratio, and superior electrochemical characteristics as the porous backbone for decoration of layered MoS2 nanoflakes to construct innovative structure hierarchical three-dimensional (3D) porous NWs MoS2/CoNiO2 hybrids with excellent charge accumulation and efficient ion transport capabilities. Physicochemical analyses were conducted on the developed hybrid composite, revealing conclusive evidence that the CoNiO2 nanowires have been securely anchored onto the surface of the MoS2 nanoflake array. The electrochemical results strongly proved the benefit of the hierarchical 3D porous MoS2/CoNiO2 hybrid structure for the charge storage kinetics. The synergistic characteristics arising from the MoS2/CoNiO2 composite yielded a notably high specific capacitance of 1340 F/g at a current density of 0.5 A/g. Furthermore, the material exhibited sustained cycling stability, retaining 95.6% of its initial capacitance after 10 000 long cycles. The asymmetric device comprising porous MoS2/CoNiO2//activated carbon encompassed outstanding energy density (93.02 Wh/kg at 0.85 kW/kg) and cycling stability (94.1% capacitance retention after 10 000 cycles). Additionally, the successful illumination of light-emitting diodes underscores the significant potential of the synthesized MoS2/CoNiO2 (2D/1D) hybrid for practical high-energy storage applications.

11.
ACS Appl Mater Interfaces ; 16(37): 49328-49336, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230579

RESUMEN

Herein, we report halide nanocomposite solid electrolytes (HNSEs) that integrate diverse oxides with alterations that allow tuning of their ionic conductivity, (electro)chemical stability, and specific density. A two-step mechanochemical process enabled the synthesis of multimetal (or nonmetal) HNSEs, MO2-2Li2ZrCl6, as verified by pair distribution function and X-ray diffraction analyses. The multimetal (or nonmetal) HNSE strategy increases the ionic conductivity of Li2ZrCl6 from 0.40 to 0.82 mS cm-1. Additionally, cyclic voltammetry test findings corroborated the enhanced passivating properties of the HNSEs. Notably, incorporating SiO2 into HNSEs leads to a substantial reduction in the specific density of HNSEs, demonstrating their strong potential for achieving a high energy density and lowering costs. Fluorinated SiO2-2Li2ZrCl5F HNSEs exhibited enhanced interfacial compatibility with Li6PS5Cl and LiCoO2 electrodes. Cells employing SiO2-2Li2ZrCl5F with LiCoO2 exhibit superior electrochemical performance delivering the initial discharge capacity of 162 mA h g-1 with 93.7% capacity retention at the 100th cycle at 60 °C.

12.
Gels ; 10(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39330188

RESUMEN

The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.

13.
Nano Lett ; 12(7): 3483-90, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22681539

RESUMEN

While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ∼0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices.

14.
Dalton Trans ; 52(46): 17061-17083, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37861455

RESUMEN

Lithium-ion batteries (LIBs) remain at the forefront of energy research due to their capability to deliver high energy density. Understanding their degradation mechanism has been essential due to their rapid engagement in modern electric vehicles (EVs), where battery failure may incur huge losses to human life and property. The literature on this intimidating issue is rapidly growing and often very complex. This review strives to succinctly present current knowledge contributing to a more comprehensible understanding of the degradation mechanism. First, this review explains the fundamentals of LIBs and various degradation mechanisms. Then, the degradation mechanism of novel Li-rich cathodes, advanced characterization techniques for identifying it, and various theoretical models are presented and discussed. We emphasize that the degradation process is not only tied to the charge-discharge cycles; synthesis-induced stress also plays a vital role in catalyzing the degradation. Finally, we propose further studies on advanced battery materials that can potentially replace the layered cathodes.

15.
ACS Catal ; 13(10): 6661-6674, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37229434

RESUMEN

We examine the performance of a number of single-atom M-N/C electrocatalysts with a common structure in order to deconvolute the activity of the framework N/C support from the metal M-N4 sites in M-N/Cs. The formation of the N/C framework with coordinating nitrogen sites is performed using zinc as a templating agent. After the formation of the electrically conducting carbon-nitrogen metal-coordinating network, we (trans)metalate with different metals producing a range of different catalysts (Fe-N/C, Co-N/C, Ni-N/C, Sn-N/C, Sb-N/C, and Bi-N/C) without the formation of any metal particles. In these materials, the structure of the carbon/nitrogen framework remains unchanged-only the coordinated metal is substituted. We assess the performance of the subsequent catalysts in acid, near-neutral, and alkaline environments toward the oxygen reduction reaction (ORR) and ascribe and quantify the performance to a combination of metal site activity and activity of the carbon/nitrogen framework. The ORR activity of the carbon/nitrogen framework is about 1000-fold higher in alkaline than it is in acid, suggesting a change in mechanism. At 0.80 VRHE, only Fe and Co contribute ORR activity significantly beyond that provided by the carbon/nitrogen framework at all pH values studied. In acid and near-neutral pH values (pH 0.3 and 5.2, respectively), Fe shows a 30-fold improvement and Co shows a 5-fold improvement, whereas in alkaline pH (pH 13), both Fe and Co show a 7-fold improvement beyond the baseline framework activity. The site density of the single metal atom sites is estimated using the nitrite adsorption and stripping method. This method allows us to deconvolute the framework sites and metal-based active sites. The framework site density of catalysts is estimated as 7.8 × 1018 sites g-1. The metal M-N4 site densities in Fe-N/C and Co-N/C are 9.4 × 1018 sites-1 and 4.8 × 1018 sites g-1, respectively.

16.
Nanomaterials (Basel) ; 13(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38063745

RESUMEN

While formamidinium lead iodide (FAPbI3) halide perovskite (HP) exhibits improved thermal stability and a wide band gap, its practical applicability is chained due to its room temperature phase transition from pure black (α-phase) to a non-perovskite yellow (δ-phase) when exposed to humidity. This phase transition is due to the fragile ionic bonding between the cationic and anionic parts of HPs during their formation. Herein, we report the synthesis of water-stable, red-light-emitting α-phase FAPbI3 nanocrystals (NCs) using five different amines to overcome these intrinsic phase instabilities. The structural, morphological, and electronic characterization were obtained using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS), respectively. The photoluminescence (PL) emission and single-particle imaging bear the signature of dual emission in several amines, indicating a self-trapped excited state. Our simple strategy to stabilize the α-phase using various amine interfacial interactions could provide a better understanding and pave the way for a novel approach for the stabilization of perovskites for prolonged durations and their multifunctional applications.

17.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903783

RESUMEN

Enhancing the participation of the lattice oxygen mechanism (LOM) in several perovskites to significantly boost the oxygen evolution reaction (OER) is daunting. With the rapid decline in fossil fuels, energy research is turning toward water splitting to produce usable hydrogen by significantly reducing overpotential for other half-cells' OER. Recent studies have shown that in addition to the conventional adsorbate evolution mechanism (AEM), participation of LOM can overcome their prevalent scaling relationship limitations. Here, we report the acid treatment strategy and bypass the cation/anion doping strategy to significantly enhance LOM participation. Our perovskite demonstrated a current density of 10 mA cm-2 at an overpotential of 380 mV and a low Tafel slope (65 mV dec-1) much lower than IrO2 (73 mV dec-1). We propose that the presence of nitric acid-induced defects regulates the electronic structure and thereby lowers oxygen binding energy, allowing enhanced LOM participation to boost OER significantly.

18.
Gels ; 10(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38247747

RESUMEN

Grid-scale energy storage applications can benefit from rechargeable sodium-ion batteries. As a potential material for making non-cobalt, nickel-free, cost-effective cathodes, earth-abundant Na2/3Fe1/2Mn1/2O2 is of particular interest. However, Mn3+ ions are particularly susceptible to the Jahn-Teller effect, which can lead to an unstable structure and continuous capacity degradation. Modifying the crystal structure by aliovalent doping is considered an effective strategy to alleviate the Jahn-Teller effect. Using a sol-gel synthesis route followed by heat treatment, we succeeded in preparing an Mg-doped Na2/3Fe1-yMnyO2 cathode. Its electrochemical properties and charge compensation mechanism were then studied using synchrotron-based X-ray absorption spectroscopy and in situ X-ray diffraction techniques. The results revealed that Mg doping reduced the number of Mn3+ Jahn-Teller centers and alleviated high voltage phase transition. However, Mg doping was unable to suppress the P2-P'2 phase transition at a low voltage discharge. An initial discharge capacity of about 196 mAh g-1 was obtained at a current density of 20 mAh g-1, and 60% of rate capability was maintained at a current density of 200 mAh g-1 in a voltage range of 1.5-4.3 V. This study will greatly contribute to the ongoing search for advanced and efficient cathodes from earth-abundant elements for rechargeable sodium-ion batteries operable at room temperature.

19.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38133053

RESUMEN

A solid-solution cathode of LiCoPO4-LiNiPO4 was investigated as a potential candidate for use with the Li4Ti5O12 (LTO) anode in Li-ion batteries. A pre-synthesized nickel-cobalt hydroxide precursor is mixed with lithium and phosphate sources by wet ball milling, which results in the final product, LiNiyCo1-yPO4 (LNCP) by subsequent heat treatment. Crystal structure and morphology of the product were analyzed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Its XRD patterns show that LNCP is primarily a single-phase compound and has olivine-type XRD patterns similar to its parent compounds, LiCoPO4 and LiNiPO4. Synchrotron X-ray absorption spectroscopy (XAS) analysis, however, indicates that Ni doping in LiCoPO4 is unfavorable because Ni2+ is not actively involved in the electrochemical reaction. Consequently, it reduces the charge storage capability of the LNCP cathode. Additionally, ex situ XRD analysis of cycled electrodes confirms the formation of the electrochemically inactive rock salt-type NiO phase. The discharge capacity of the LNCP cathode is entirely associated with the Co3+/Co2+ redox couple. The electrochemical evaluation demonstrated that the LNCP cathode paired with the LTO anode produced a 3.12 V battery with an energy density of 184 Wh kg-1 based on the cathode mass.

20.
Nat Commun ; 14(1): 2459, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117172

RESUMEN

Designing highly conductive and (electro)chemical stable inorganic solid electrolytes using cost-effective materials is crucial for developing all-solid-state batteries. Here, we report halide nanocomposite solid electrolytes (HNSEs) ZrO2(-ACl)-A2ZrCl6 (A = Li or Na) that demonstrate improved ionic conductivities at 30 °C, from 0.40 to 1.3 mS cm-1 and from 0.011 to 0.11 mS cm-1 for Li+ and Na+, respectively, compared to A2ZrCl6, and improved compatibility with sulfide solid electrolytes. The mechanochemical method employing Li2O for the HNSEs synthesis enables the formation of nanostructured networks that promote interfacial superionic conduction. Via density functional theory calculations combined with synchrotron X-ray and 6Li nuclear magnetic resonance measurements and analyses, we demonstrate that interfacial oxygen-substituted compounds are responsible for the boosted interfacial conduction mechanism. Compared to state-of-the-art Li2ZrCl6, the fluorinated ZrO2-2Li2ZrCl5F HNSE shows improved high-voltage stability and interfacial compatibility with Li6PS5Cl and layered lithium transition metal oxide-based positive electrodes without detrimentally affecting Li+ conductivity. We also report the assembly and testing of a Li-In||LiNi0.88Co0.11Mn0.01O2 all-solid-state lab-scale cell operating at 30 °C and 70 MPa and capable of delivering a specific discharge of 115 mAh g-1 after almost 2000 cycles at 400 mA g-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA