Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 292(25): 10574-10585, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28465351

RESUMEN

Hepatocyte nuclear factor 4α (HNF4α) controls the expression of liver-specific protein-coding genes. However, some microRNAs are also modulated by HNF4α, and it is not known whether they are direct targets of HNF4α and whether they influence hepatic function. In this study, we found that HNF4α regulates microRNAs, indicated by marked down-regulation of miR-194 and miR-192 (miR-194/192) in liver-specific Hnf4a-null (Hnf4aΔH) mice. Transactivation of the shared miR-194/192 promoter was dependent on HNF4α expression, indicating that miR-194/192 is a target gene of HNF4α. Screening of potential mRNAs targeted by miR-194/192 revealed that expression of genes involved in glucose metabolism (glycogenin 1 (Gyg1)), cell adhesion and migration (activated leukocyte cell adhesion molecule (Alcam)), tumorigenesis and tumor progression (Rap2b and epiregulin (Ereg)), protein SUMOylation (Sumo2), epigenetic regulation (Setd5 and Cullin 4B (Cln4b)), and the epithelial-mesenchymal transition (moesin (Msn)) was up-regulated in Hnf4aΔH mice. Moreover, we also found that miR-194/192 binds the 3'-UTR of these mRNAs. siRNA knockdown of HNF4α suppressed miR-194/192 expression in human hepatocellular carcinoma (HCC) cells and resulted in up-regulation of their mRNA targets. Inhibition and overexpression experiments with miR-194/192 revealed that Gyg1, Setd5, Sumo2, Cln4b, and Rap2b are miR-194 targets, whereas Ereg, Alcam, and Msn are miR-192 targets. These findings reveal a novel HNF4α network controlled by miR-194/192 that may play a critical role in maintaining the hepatocyte-differentiated state by inhibiting expression of genes involved in dedifferentiation and tumorigenesis. These insights may contribute to the development of diagnostic markers for early HCC detection, and targeting of the miR-194/192 pathway could be useful for managing HCC.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , MicroARNs/metabolismo , Transducción de Señal/fisiología , Regiones no Traducidas 3'/fisiología , Molécula de Adhesión Celular del Leucocito Activado/biosíntesis , Molécula de Adhesión Celular del Leucocito Activado/genética , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Epirregulina/biosíntesis , Epirregulina/genética , Glucosiltransferasas/biosíntesis , Glucosiltransferasas/genética , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Factor Nuclear 4 del Hepatocito/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Mutantes , MicroARNs/genética , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/biosíntesis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
2.
Nucleic Acids Res ; 44(4): 1894-908, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26721388

RESUMEN

Archaeosine (G(+)), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G(+) by archaeosine synthase. However, tRNA(Leu) from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G(+)13 and G(+)15 modifications. In this study, we focused on the biosynthesis mechanism of G(+)13 and G(+)15 modifications in this tRNA(Leu). Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNA(Leu) transcript with (14)C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNA(Leu) variants were expressed. Mass spectrometry analysis of purified tRNA(Leu) variants revealed the modifications of G(+)13 and G(+)15 in the wild-type tRNA(Leu). Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G(+)13 and G(+)15 modifications.


Asunto(s)
Glicósido Hidrolasas/genética , Complejos Multienzimáticos/genética , ARN de Transferencia/genética , Thermoplasma/enzimología , Transferasas/genética , Regulación Enzimológica de la Expresión Génica , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Pyrococcus horikoshii/enzimología , Thermoplasma/genética , Transferasas/química , Transferasas/metabolismo
3.
Nucleic Acids Res ; 42(5): 3152-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24322300

RESUMEN

The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues conserved among bacterial YaeJ proteins. Additionally, we determined the solution structure of the GGQ domain of YaeJ from E. coli using nuclear magnetic resonance spectroscopy. YaeJ and a human homolog, ICT1, had similar levels of PTH activity, despite various differences in sequence and structure. While no YaeJ-specific residues important for PTH activity occur in the structured GGQ domain, Arg118, Leu119, Lys122, Lys129 and Arg132 in the following C-terminal extension were required for PTH activity. All of these residues are completely conserved among bacteria. The equivalent residues were also found in the C-terminal extension of ICT1, allowing an appropriate sequence alignment between YaeJ and ICT1 proteins from various species. Single amino acid substitutions for each of these residues significantly decreased ribosome-binding efficiency. These biochemical findings provide clues to understanding how YaeJ enters the A-site of stalled ribosomes.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Proteínas de Escherichia coli/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Codón , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas/química , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas , Alineación de Secuencia
4.
Nucleic Acids Res ; 39(5): 1739-48, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21051357

RESUMEN

In bacteria, ribosomes often become stalled and are released by a trans-translation process mediated by transfer-messenger RNA (tmRNA). In the absence of tmRNA, however, there is evidence that stalled ribosomes are released from non-stop mRNAs. Here, we show a novel ribosome rescue system mediated by a small basic protein, YaeJ, from Escherichia coli, which is similar in sequence and structure to the catalytic domain 3 of polypeptide chain release factor (RF). In vitro translation experiments using the E. coli-based reconstituted cell-free protein synthesis system revealed that YaeJ can hydrolyze peptidyl-tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs containing rare codon clusters that extend downstream from the P-site and prevent Ala-tmRNA•SmpB from entering the empty A-site. In addition, YaeJ had no effect on translation of a normal mRNA with a stop codon. These results suggested a novel tmRNA-independent rescue system for stalled ribosomes in E. coli. YaeJ was almost exclusively found in the 70S ribosome and polysome fractions after sucrose density gradient sedimentation, but was virtually undetectable in soluble fractions. The C-terminal basic residue-rich extension was also found to be required for ribosome binding. These findings suggest that YaeJ functions as a ribosome-attached rescue device for stalled ribosomes.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencias de Aminoácidos , Hidrolasas de Éster Carboxílico/química , Codón , Escherichia coli/genética , Proteínas de Escherichia coli/química , Hidrólisis , Unión Proteica , Proteínas Ribosómicas/química
5.
J Biochem ; 174(2): 203-216, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37094335

RESUMEN

The pre-spliceosomal complex involves interactions between U1 and U2 snRNPs, where a ubiquitin-like domain (ULD) of SF3A1, a component of U2 snRNP, binds to the stem-loop 4 (SL4; the UUCG tetraloop) of U1 snRNA in U1 snRNP. Here, we reported the 1.80 Å crystal structure of human SF3A1 ULD (ULDSF3A1) complexed with SL4. The structural part of ULDSF3A1 (res. 704-785) adopts a typical ß-grasp fold with a topology of ß1-ß2-α1-310a-ß3-ß4-310b-ß5, closely resembling that of ubiquitin, except for the length and structure of the ß1/ß2 loop. A patch on the surface formed by three ULDSF3A1-specific residues, Lys756 (ß3), Phe763 (ß4) and Lys765 (following ß4), contacts the canonical UUCG tetraloop structure. In contrast, the directly following C-terminal tail composed of 786KERGGRKK793 was essentially stretched. The main or side chains of all the residues interacted with the major groove of the stem helix; the RGG residues adopted a peculiar conformation for RNA recognition. These findings were confirmed by mutational studies using bio-layer interferometry. Collectively, a unique combination of the ß-grasp fold and the C-terminal tail constituting ULDSF3A1 is required for the SL4-specific binding. This interaction mode also suggests that putative post-translational modifications, including ubiquitination in ULDSF3A1, directly inhibit SL4 binding.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U2 , Ubiquitina , Humanos , Ribonucleoproteína Nuclear Pequeña U2/genética , Ubiquitina/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN , Factores de Empalme de ARN
6.
Proteins ; 80(11): 2629-42, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22821833

RESUMEN

Loss of function of the c12orf65 gene causes a mitochondrial translation defect, leading to encephalomyopathy. The C12orf65 protein is thought to play a role similar to that of ICT1 in rescuing stalled mitoribosomes during translation. Both proteins belong to a family of Class I peptide release factors (RFs), all characterized by the presence of a GGQ motif. Here, we determined the solution structure of the GGQ-containing domain (GGQ domain) of C12orf65 from mouse by NMR spectroscopy, and examined the effect of siRNA-mediated knockdown of C12orf65 on mitochondria in HeLa cells using flow cytometry. The GGQ domain, comprising residues 60-124 of the 184-residue full-length protein, forms a structure with a 3(10) -ß1-ß2-ß3-α1 topology that resembles the GGQ domain structure of RF more closely than that of ICT1. Thus, the GGQ domain structures of this protein family can be divided into two types, depending on the region linking ß2 and ß3; the C12orf65/RF type having a 6-residue π-HB turn and the ICT1 type having an α-helix. Knockdown of C12orf65 resulted in increased ROS production and apoptosis, leading to inhibition of cell proliferation. Substantial changes in mitochondrial membrane potential and mass in the C12orf65-knockdown cells were observed compared with the control cells. These results indicate that the function of C12orf65 is essential for cell vitality and mitochondrial function. Although similar effects were observed in ICT1-downregulated cells, there were significant differences in the range and pattern of the effects between C12orf65- and ICT1-knockdown cells, suggesting different roles of C12orf65 and ICT1 in rescuing stalled mitoribosomes.


Asunto(s)
Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Secuencia de Aminoácidos , Animales , Apoptosis , Expresión Génica , Células HeLa , Humanos , Ratones , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia , Transfección
7.
Protein Sci ; 31(10): e4437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173164

RESUMEN

SURP domains are exclusively found in splicing-related proteins in all eukaryotes. SF3A1, a component of the U2 snRNP, has two tandem SURP domains, SURP1, and SURP2. SURP2 is permanently associated with a specific short region of SF3A3 within the SF3A protein complex whereas, SURP1 binds to the splicing factor SF1 for recruitment of U2 snRNP to the early spliceosomal complex, from which SF1 is dissociated during complex conversion. Here, we determined the solution structure of the complex of SURP1 and the human SF1 fragment using nuclear magnetic resonance (NMR) methods. SURP1 adopts the canonical topology of α1-α2-310 -α3, in which α1 and α2 are connected by a single glycine residue in a particular backbone conformation, allowing the two α-helices to be fixed at an acute angle. A hydrophobic patch, which is part of the characteristic surface formed by α1 and α2, specifically contacts a hydrophobic cluster on a 16-residue α-helix of the SF1 fragment. Furthermore, whereas only hydrophobic interactions occurred between SURP2 and the SF3A3 fragment, several salt bridges and hydrogen bonds were found between the residues of SURP1 and the SF1 fragment. This finding was confirmed through mutational studies using bio-layer interferometry. The study also revealed that the dissociation constant between SURP1 and the SF1 fragment peptide was approximately 20 µM, indicating a weak or transient interaction. Collectively, these results indicate that the interplay between U2 snRNP and SF1 involves a transient interaction of SURP1, and this transient interaction appears to be common to most SURP domains, except for SURP2.


Asunto(s)
Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2 , Empalmosomas , Glicina , Humanos , Unión Proteica , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
8.
Biomol NMR Assign ; 16(2): 297-303, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35666428

RESUMEN

Ribosome biogenesis is a complicated, multistage process coordinated by ribosome assembly factors. Ribosome binding factor A (RbfA) is a bacterial one, which possesses a single structural type-II KH domain. By this domain, RbfA binds to a 16S rRNA precursor in small ribosomal subunits to promote its 5'-end processing. The human RbfA homolog, mtRbfA, binds to 12S rRNAs in the mitoribosomal small subunits and promotes its critical maturation process, the dimethylation of two highly conserved consecutive adenines, which differs from that of RbfA. However, the structural basis of the mtRbfA-mediated maturation process is poorly understood. Herein, we report the 1H, 15N, and 13C resonance assignments of the KH domain of mtRbfA and its solution structure. The mtRbfA domain adopts essentially the same α1-ß1-ß2-α2(kinked)-ß3 topology as the type-II KH domain. Comparison with the RbfA counterpart showed structural differences in specific regions that function as a putative RNA-binding site. Particularly, the α2 helix of mtRbfA forms a single helix with a moderate kink at the Ser-Ala-Ala sequence, whereas the corresponding α2 helix of RbfA is interrupted by a distinct kink at the Ala-x-Gly sequence, characteristic of bacterial RbfA proteins, to adopt an α2-kink-α3 conformation. Additionally, the region linking α1 and ß1 differs considerably in the sequence and structure between RbfA and mtRbfA. These findings suggest some variations of the RNA-binding mode between them and provide a structural basis for mtRbfA function in mitoribosome biogenesis.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Mitocondriales/química , Ribosomas Mitocondriales , Proteínas de Unión al ARN/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Humanos , Ribosomas Mitocondriales/metabolismo , Resonancia Magnética Nuclear Biomolecular , Precursores del ARN/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Vitamina B 12/análogos & derivados
9.
Commun Biol ; 4(1): 300, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686140

RESUMEN

Mitochondrial translation appears to involve two stalled-ribosome rescue factors (srRFs). One srRF is an ICT1 protein from humans that rescues a "non-stop" type of mitochondrial ribosomes (mitoribosomes) stalled on mRNA lacking a stop codon, while the other, C12orf65, reportedly has functions that overlap with those of ICT1; however, its primary role remains unclear. We herein demonstrated that the Saccharomyces cerevisiae homolog of C12orf65, Pth3 (Rso55), preferentially rescued antibiotic-dependent stalled mitoribosomes, which appear to represent a "no-go" type of ribosomes stalled on intact mRNA. On media containing a non-fermentable carbon source, which requires mitochondrial gene expression, respiratory growth was impaired significantly more by the deletion of PTH3 than that of the ICT1 homolog PTH4 in the presence of antibiotics that inhibit mitochondrial translation, such as tetracyclines and macrolides. Additionally, the in organello labeling of mitochondrial translation products and quantification of mRNA levels by quantitative RT-PCR suggested that in the presence of tetracycline, the deletion of PTH3, but not PTH4, reduced the protein expression of all eight mtDNA-encoded genes at the post-transcriptional or translational level. These results indicate that Pth3 can function as a mitochondrial srRF specific for ribosomes stalled by antibiotics and plays a role in antibiotic resistance in fungi.


Asunto(s)
Antibacterianos/farmacología , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/efectos de los fármacos , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Farmacorresistencia Fúngica , Regulación Fúngica de la Expresión Génica , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/metabolismo , Mutación , Factores de Terminación de Péptidos/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Protein Sci ; 26(2): 280-291, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27862552

RESUMEN

The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598-631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of ß1-α1-ß2-ß3-α2-ß4. Furthermore, a docking model based on NOESY measurements suggests that residues 607-616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix-helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull-down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix-helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145.


Asunto(s)
Simulación del Acoplamiento Molecular , Pliegue de Proteína , Factores de Empalme de ARN/química , Secuencias de Aminoácidos , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios Proteicos , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
12.
Gene ; 365: 67-73, 2006 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-16356664

RESUMEN

SmaI is a short interspersed element (SINE) of the salmon genome, and is derived from tRNA(Lys). We probed the secondary structure of SmaI SINE RNA by enzymatic cleavage and found that the RNA structure comprises three separate domains. The 5'-terminal region (the 5' domain) forms a tRNA-like cloverleaf structure, whereas the 3'-terminal region (the 3' domain) forms an extended stem-loop. The loop region is thought to be recognized by the reverse transcriptase (RT) encoded by the long interspersed element (LINE). The two structural domains are linked by a single-stranded region (the linker domain). Our melting profile analyses indicated the presence of two structural domains having different thermal stabilities, thus supporting the domain composition described above. Based on these results, we discuss the structural generality and evolutionary advantage of the domain composition of SINE RNA.


Asunto(s)
Conformación de Ácido Nucleico , Oncorhynchus keta/genética , Elementos de Nucleótido Esparcido Corto , Animales , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN de Transferencia/genética , Transcripción Genética , Urea/farmacología
13.
Protein Sci ; 14(3): 756-64, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15689505

RESUMEN

Among the many PWWP-containing proteins, the largest group of homologous proteins is related to hepatoma-derived growth factor (HDGF). Within a well-conserved region at the extreme N-terminus, HDGF and five HDGF-related proteins (HRPs) always have a PWWP domain, which is a module found in many chromatin-associated proteins. In this study, we determined the solution structure of the PWWP domain of HDGF-related protein-3 (HRP-3) by NMR spectroscopy. The structure consists of a five-stranded beta-barrel with a PWWP-specific long loop connecting beta2 and beta3 (PR-loop), followed by a helical region including two alpha-helices. Its structure was found to have a characteristic solvent-exposed hydrophobic cavity, which is composed of an abundance of aromatic residues in the beta1/beta2 loop (beta-beta arch) and the beta3/beta4 loop. A similar ligand binding cavity occurs at the corresponding position in the Tudor, chromo, and MBT domains, which have structural and probable evolutionary relationships with PWWP domains. These findings suggest that the PWWP domains of the HDGF family bind to some component of chromatin via the cavity.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Histidina/genética , Histidina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
J Mol Biol ; 318(3): 665-77, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-12054814

RESUMEN

Archaeosine tRNA-guanine transglycosylase (ArcTGT) catalyzes the exchange of guanine at position 15 in the D-loop of archaeal tRNAs with a free 7-cyano-7-deazaguanine (preQ(0)) base, as the first step in the biosynthesis of an archaea-specific modified base, archaeosine (7-formamidino-7-deazaguanosine). We determined the crystal structures of ArcTGT from Pyrococcus horikoshii at 2.2 A resolution and its complexes with guanine and preQ(0), at 2.3 and 2.5 A resolutions, respectively. The N-terminal catalytic domain folds into an (alpha/beta)(8) barrel with a characteristic zinc-binding site, showing structural similarity with that of the bacterial queuosine TGT (QueTGT), which is involved in queuosine (7-[[(4,5-cis-dihydroxy-2-cyclopenten-1-yl)-amino]methyl]-7-deazaguanosine) biosynthesis and targets the tRNA anticodon. ArcTGT forms a dimer, involving the zinc-binding site and the ArcTGT-specific C-terminal domain. The C-terminal domains have novel folds, including an OB fold-like "PUA domain", whose sequence is widely conserved in eukaryotic and archaeal RNA modification enzymes. Therefore, the C-terminal domains may be involved in tRNA recognition. In the free-form structure of ArcTGT, an alpha-helix located at the rim of the (alpha/beta)(8) barrel structure is completely disordered, while it is ordered in the guanine-bound and preQ(0)-bound forms. Structural comparison of the ArcTGT.preQ(0), ArcTGT.guanine, and QueTGT.preQ(1) complexes provides novel insights into the substrate recognition mechanisms of ArcTGT.


Asunto(s)
Guanina/análogos & derivados , Pentosiltransferasa/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Guanina/biosíntesis , Modelos Moleculares , Datos de Secuencia Molecular , Nucleósido Q/biosíntesis , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Pyrococcus/enzimología , Pyrococcus/genética , Homología de Secuencia de Aminoácido , Electricidad Estática
15.
Biochimie ; 114: 102-12, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25446863

RESUMEN

Ribosomes often stall during protein synthesis in various situations in a cell, either unexpectedly or in a programmed fashion. While some of them remain stalled for gene regulation, many are rescued by some cellular systems. Ribosomes stalled at the 3' end of a truncated mRNA lacking a stop codon (non-stop mRNA) are rescued by trans-translation mediated by tmRNA (transfer-messenger RNA) and a partner protein, SmpB. Through trans-translation, a degradation tag is added to the C-termini of truncated polypeptides from a truncated mRNA to prevent them from accumulation in the cell. Trans-translation has crucial roles in a wide variety of cellular events, especially under stressful conditions. The trans-translation system is thought to be universally present in the bacterial domain, although it is not necessarily essential in all bacterial cells. It has recently been revealed that two other systems, one involving a small protein, ArfA, with RF2 and the other involving YaeJ (ArfB), a class I release factor homologue, operate to relieve ribosome stalling in Escherichia coli. Thus, many bacterial species would have multiple systems to cope with various kinds of stalled translation events.


Asunto(s)
Bacterias/metabolismo , Biosíntesis de Proteínas , Ribosomas/fisiología , Bacterias/genética , Proteínas Bacterianas/biosíntesis , Codón , Conformación de Ácido Nucleico , ARN Bacteriano/fisiología
16.
Protein Sci ; 13(8): 2089-100, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273307

RESUMEN

GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.


Asunto(s)
Proteínas Quinasas/química , Alineación de Secuencia , Homología Estructural de Proteína , Secuencia de Aminoácidos , Animales , Ratones , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas Serina-Treonina Quinasas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , eIF-2 Quinasa/química
17.
FEBS Lett ; 535(1-3): 94-100, 2003 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-12560085

RESUMEN

Small protein B (SmpB) is required for trans-translation, binding specifically to tmRNA. We show here the solution structure of SmpB from an extremely thermophilic bacterium, Thermus thermophilus HB8, determined by heteronuclear nuclear magnetic resonance methods. The core of the protein consists of an antiparallel beta-barrel twisted up from eight beta-strands, each end of which is capped with the second or third helix, and the first helix is located beside the barrel. Its C-terminal sequence (20 residues), which is rich in basic residues, shows a poorly structured form, as often seen in isolated ribosomal proteins. The results are discussed in relation to the oligonucleotide binding fold.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Soluciones , Thermus thermophilus
19.
FEBS Open Bio ; 2: 20-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23650576

RESUMEN

Choline-O-sulfate (2-(trimethylammonio)ethyl sulfate, COS) is a naturally occurring osmolyte that is synthesized by plants, lichens, algae, fungi, and several bacterial species. We examined the inhibitory effects of COS on amyloid formation of the human islet amyloid polypeptide (hIAPP or amylin) using a thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy and transmission electron microscopy. The results showed that COS suppresses a conformational change of hIAPP from a random coil to a ß-sheet structure, resulting in the inhibition of amyloid formation. Comparisons with various structural analogs including carnitine, acetylcholine and non-detergent sulfobetaines (NDSBs) using the ThT fluorescence assay showed that COS is the most effective inhibitor of hIAPP amyloid formation, suggesting that the sulfate group, which is unique to COS, significantly contributes to the inhibition.

20.
J Mol Biol ; 404(2): 260-73, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20869366

RESUMEN

The ICT1 protein was recently reported to be a component of the human mitoribosome and to have codon-independent peptidyl-tRNA hydrolysis activity via its conserved GGQ motif, although little is known about the detailed mechanism. Here, using NMR spectroscopy, we determined the solution structure of the catalytic domain of the mouse ICT1 protein that lacks an N-terminal mitochondrial targeting signal and an unstructured C-terminal basic-residue-rich extension, and we examined the effect of ICT1 knockdown (mediated by small interfering RNA) on mitochondria in HeLa cells using flow cytometry. The catalytic domain comprising residues 69-162 of the 206-residue full-length protein forms a structure with a ß1-ß2-α1-ß3-α2 topology and a structural framework that resembles the structure of GGQ-containing domain 3 of class 1 release factors (RFs). Half of the structure, including the GGQ-containing loop, has essentially the same sequence and structure as those in RFs, consistent with the peptidyl-tRNA hydrolysis activity of ICT1 on the mitoribosome, which is analogous to RFs. However, the other half of the structure differs in shape from the corresponding part of RF domain 3 in that in ICT1, an α-helix (α1), instead of a ß-turn, is inserted between strand ß2 and strand ß3. A characteristic groove formed between α1 and the three-stranded antiparallel ß-sheet was identified as a putative ICT1-specific functional site by a structure-based alignment. In addition, the structured domain that recognizes stop codons in RFs is replaced in ICT1 by a C-terminal basic-residue-rich extension. It appears that these differences are linked to a specific function of ICT1 other than the translation termination mediated by RFs. Flow cytometry analysis showed that the knockdown of ICT1 results in apoptotic cell death with a decrease in mitochondrial membrane potential and mass. In addition, cytochrome c oxidase activity in ICT1 knockdown cells was decreased by 35% compared to that in control cells. These results indicate that ICT1 function is essential for cell vitality and mitochondrial function.


Asunto(s)
Proteínas Mitocondriales/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico , Supervivencia Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Técnicas In Vitro , Ratones , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Estructura Terciaria de Proteína , Proteínas/antagonistas & inhibidores , Proteínas/química , Proteínas/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Ribosómicas , Homología de Secuencia de Aminoácido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA