Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(14): 10737-10745, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516809

RESUMEN

The role of oxygen vacancies and interfacial strain on the metal-insulator transition (MIT) behavior of high-quality VO2 nanobeams (NBs) synthesized on SiO2/Si substrates employing V2O5 as a precursor has been investigated in this research. Selective oxygen vacancies have been generated by argon plasma irradiation. The MIT is progressively suppressed as the duration of plasma processing increases; in addition, the temperature of MIT (TMIT) drops by up to 95 K relative to the pristine VO2 NBs. Incorporating oxygen vacancies into VO2 may increase its electron concentration, which might shift the Fermi levels upward, strengthen the electronic orbital overlap of the V-V chains, and further stabilize the metallic phase at lower temperatures, based on first-principles calculations. Furthermore, in order to evaluate the influence of substrate-induced strain in our situation, the MIT in two distinct types of VO2 NB samples is examined without metal contacts by using the distinctive light scattering characteristics of the metal (M) and insulator (I) phases (i.e., M/I domains) by optical microscopy. It is found that the domain structures in the "clamped" NBs persisted up to ∼453 K, while the "released" NBs (transferred to a new substrate) did not exhibit any domain structures and turned into an entirely M phase with a dark contrast above ∼348 K. When combined with first-principles calculations, the electronic orbital occupancy in the rutile phase contributes to explaining the interfacial strain-induced modulation of MIT. The current findings shed light on how interfacial strain and oxygen vacancies impact MIT behavior. It also suggests several types of control strategies for MIT in VO2 NBs, which are essential for a broader spectrum of VO2 NB applications.

2.
Am J Pathol ; 192(12): 1725-1744, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150507

RESUMEN

Large conductance Ca2+-activated potassium (BKCa) channels are regulated by intracellular free Ca2+ concentrations ([Ca2+]i) and channel protein phosphorylation. In hypercholesterolemia (HC), motility impairment of the sphincter of Oddi (SO) is associated with abnormal [Ca2+]i accumulation in smooth muscle cells of the rabbit SO (RSOSMCs), which is closely related to BKCa channel activity. However, the underlying mechanisms regulating channel activity remain unclear. In this study, an HC rabbit model was generated and used to investigate BKCa channel activity of RSOSMCs via SO muscle tone measurement in vitro and manometry in vivo, electrophysiological recording, intracellular calcium measurement, and Western blot analyses. BKCa channel activity was decreased, which correlated with [Ca2+]i overload and reduced tyrosine phosphorylation of the BKCa α-subunit in the HC group. The abnormal [Ca2+]i accumulation and decreased BKCa channel activity were partially restored by Na3VO4 pretreatment but worsened by genistein in RSOSMCs in the HC group. This study suggests that α-subunit tyrosine phosphorylation is required for [Ca2+]i to activate BKCa channels, and there is a negative feedback between the BKCa channel and the L-type voltage-dependent Ca2+ channel that regulates [Ca2+]i. This study provides direct evidence that tyrosine phosphorylation of BKCa α-subunits is required for [Ca2+]i to activate BKCa channels in RSOSMCs, which may be the underlying physiological and pathologic mechanism regulating the activity of BKCa channels in SO cells.


Asunto(s)
Canales de Potasio , Esfínter de la Ampolla Hepatopancreática , Animales , Conejos , Fosforilación , Procesamiento Proteico-Postraduccional , Tirosina
3.
Nanotechnology ; 34(50)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748477

RESUMEN

Two-dimensional (2D) p-n heterojunctions have attracted great attention due to their outstanding properties in electronic and optoelectronic devices, especially in photodetectors. Various types of heterojunctions have been constituted by mechanical exfoliation and stacking. However, achieving controlled growth of heterojunction structures remains a tremendous challenge. Here, we employed a two-step KI-assisted confined-space chemical vapor deposition method to prepare multilayer WSe2/SnS2p-n heterojunctions. Optical characterization results revealed that the prepared WSe2/SnS2vertical heterostructures have clear interfaces as well as vertical heterostructures. The electrical and optoelectronic properties were investigated by constructing the corresponding heterojunction devices, which exhibited good rectification characteristics and obtained a high detectivity of 7.85 × 1012Jones and a photoresponse of 227.3 A W-1under visible light irradiation, as well as a fast rise/fall time of 166/440µs. These remarkable performances are likely attributed to the ultra-low dark current generated in the depletion region at the junction and the high direct tunneling current during illumination. This work demonstrates the value of multilayer WSe2/SnS2heterojunctions for applications in high-performance photodetectors.

4.
BMC Immunol ; 23(1): 27, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658899

RESUMEN

BACKGROUND: Varicella-zoster virus (VZV) is a pathogen that causes chickenpox and shingles in humans. Different types of the varicella vaccines derived from the Oka and MAV/06 strains are commercially available worldwide. Although the MAV/06 vaccine was introduced in 1990s, little was known about immunological characteristics. RESULTS: Here, we evaluated B and T cell immune response in animals inoculated with the Oka and MAV/06 vaccines as well as a new formulation of the MAV/06 vaccine. A variety of test methods were applied to evaluate T and B cell immune response. Plaque reduction neutralization test (PRNT) and fluorescent antibody to membrane antigen (FAMA) assay were conducted to measure the MAV/06 vaccine-induced antibody activity against various VZVs. Glycoprotein enzyme-linked immunosorbent assay (gpELISA) was used to compare the degree of the antibody responses induced by the two available commercial VZV vaccines and the MAV/06 vaccine. Interferon-gamma enzyme-linked immunosorbent spot (IFN-γ ELISpot) assays and cytokine bead array (CBA) assays were conducted to investigate T cell immune responses. Antibodies induced by MAV/06 vaccination showed immunogenicity against a variety of varicella-zoster virus and cross-reactivity among the virus clades. CONCLUSIONS: It is indicating the similarity of the antibody responses induced by commercial varicella vaccines and the MAV/06 vaccine. Moreover, VZV-specific T cell immune response from MAV/06 vaccination was increased via Th1 cell response. MAV/06 varicella vaccine induced both humoral and cellular immune response via Th1 cell mediated response.


Asunto(s)
Varicela , Vacuna contra el Herpes Zóster , Vacunas Virales , Animales , Anticuerpos Antivirales , Varicela/prevención & control , Vacuna contra la Varicela , Modelos Animales de Enfermedad , Herpesvirus Humano 3 , Vacunación , Vacunas Atenuadas
5.
Nanotechnology ; 33(22)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35172297

RESUMEN

Two-dimensional (2D) materials including black phosphorus (BP) have been extensively investigated because of their exotic physical properties and potential applications in nanoelectronics and optoelectronics. Fabricating BP based devices is challenging because BP is extremely sensitive to the external environment, especially to the chemical contamination during the lithography process. The direct evaporation through shadow mask technique is a clean method for lithography-free electrode patterning of 2D materials. Herein, we employ the lithography-free evaporation method for the construction of BP based field-effect transistors and photodetectors and systematically compare their performances with those of BP counterparts fabricated by conventional lithography and transfer electrode methods. The results show that BP devices fabricated by direct evaporation method possess higher mobility, faster response time, and smaller hysteresis than those prepared by the latter two methods. This can be attributed to the clean interface between BP and evaporated-electrodes as well as the lower Schottky barrier height of 20.2 meV, which is given by the temperature-dependent electrical results. Furthermore, the BP photodetectors exhibit a broad-spectrum response and polarization sensitivity. Our work elucidates a universal, low-cost and high-efficiency method to fabricate BP devices for optoelectronic applications.

6.
Small ; 17(18): e2007312, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33733558

RESUMEN

The controllable large-area growth of single-crystal vertical heterostructures based on 2D transition metal dichalcogenides (TMDs) remains a challenge. Here, large-area vertical MoS2 /WS2 heterostructures are synthesized using single-step confined-space chemical vapor epitaxy. The heterostructures can evolve into two different kinds by switching the H2 flow on and off: MoS2 /WS2 heterostructures with multiple WS2 domains can be achieved without introducing the H2 flow due to the numerous nucleation centers on the bottom MoS2 monolayer during the transition stage between the MoS2 and WS2 monolayer growth. In contrast, isolated MoS2 /WS2 heterostructures with single WS2 domain can be obtained with introducing the H2 flow due to the reduced nucleation centers on the bottom MoS2 monolayer arising from the hydrogen etching effect. Both the two kinds of the vertical MoS2 /WS2 heterostructures feature high quality. The photodetectors based on the isolated MoS2 /WS2 heterostructures exhibit a high responsivity of 68 mA W-1 and a short response time of 35 ms. This single-step chemical vapor epitaxy can be used to synthesize vertical MoS2 /WS2 heterostructures with high production efficiency. The new epitaxial growth approach may open new pathways to fabricate large-area heterostructures made of different 2D TMDs monolayers of interest to electronics, optoelectronics, and other applications.

7.
Nanotechnology ; 32(35)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33975284

RESUMEN

Alloy engineering is efficient in modulating the electronic structure and physical and chemical properties of Transition metal dichalcogenides (TMDs). Here, we develop an efficient and simple confined-space CVD strategy by using a smaller quartz boat nested in a larger quartz boat for the preparation of ternary alloy MoS2(1-x)Se2xmonolayers on SiO2/Si substrates with controllable composition. The effect of hydrogen ratio of the mixed carrier gas (Ar/H2) on the resultant flakes are systematically investigated. A hydrogon ratio of 15% is demonstrated to be the most appropriate to synthesize large size (more than 400µm) single crystalline MoS2(1-x)Se2xalloy monolayers. The composition of the alloy can also be changed in a full range (2x= 0-2) by changing the weight ratio of Se and S powder. The as-grown monolayer MoS2(1-x)Se2xalloys present continuously high crystal quality in terms of Raman and PL measurements. Furthermore, to visible light (532 nm), the MoS2(1-x)Se2xbased photodetectors display wonderful photoresponse with a fast response of less than 50 ms. Our work may be usedful in directing the synthesis of TMDs alloys as well as their optoelectronic applications.

8.
Nanotechnology ; 33(6)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34649226

RESUMEN

In recent years, two-dimensional materials have received more and more attention in the development of semiconductor devices, and their practical applications in optoelectronic devices have also developed rapidly. However, there are still some factors that limit the performance of two-dimensional semiconductor material devices, and one of the most important is Ohmic contact. Here, we elaborate on a variety of approaches to achieve Ohmic contacts on two-dimensional materials and reveal their physical mechanisms. For the work function mismatch problem, we summarize the comparison of barrier heights between different metals and 2D semiconductors. We also examine different methods to solve the problem of Fermi level pinning. For the novel 2D metal-semiconductor contact methods, we analyse their effects on reducing contact resistance from two different perspectives: homojunction and heterojunction. Finally, the challenges of 2D semiconductors in achieving Ohmic contacts are outlined.

9.
Nanotechnology ; 32(2): 025201, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32957095

RESUMEN

Some advances have been achieved in developing heterojunctions consisting of indium-gallium-zinc oxide (a-IGZO) films and two dimensional (2D) van der Waals materials for optoelectronic applications in recent years, however, the improvement of IGZO channel itself via constructing such heterojunctions is rarely reported. Here, we report the huge improvement in photoresponse performances for the IGZO phototransistor devices by introducing boron nitride (BN)/black phosphorus (BP) interface engineering. By creating an appropriate band bending and an efficient photo-generated carrier transfer path between IGZO and BP, the recombination of the photo-generated carriers in the IGZO channel is significantly suppressed. As a result, the corresponding photoresponsivity at a wavelength of 447 nm can be promoted from 0.05 A W-1 to 0.3 A W-1. A corresponding maximum external quantum efficiency of 83.4% was obtained for the BN/BP decorated IGZO phototransistor. The results imply that such interface engineering via 2D materials can be used as a general route to high performance oxide-semiconductor based optoelectronic devices.

10.
BMC Med Imaging ; 21(1): 17, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33535988

RESUMEN

BACKGROUND: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate the diagnostic performance of machine learning using radiomics modelfrom T1-weighted contrast enhanced imaging(T1CE) in differentiating pseudoprogression from true progression after standard treatment for GBM. METHODS: Seventy-sevenGBM patients, including 51 with true progression and 26 with pseudoprogression,who underwent standard treatment and T1CE, were retrospectively enrolled.Clinical information, including sex, age, KPS score, resection extent, neurological deficit and mean radiation dose, were also recorded collected for each patient. The whole tumor enhancementwas manually drawn on the T1CE image, and a total of texture 9675 features were extracted and fed to a two-step feature selection scheme. A random forest (RF) classifier was trained to separate the patients by their outcomes.The diagnostic efficacies of the radiomics modeland radiologist assessment were further compared by using theaccuracy (ACC), sensitivity and specificity. RESULTS: No clinical features showed statistically significant differences between true progression and pseudoprogression.The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78%(95% confidence interval [CI]: 0.45,0.91), 78.36%(95%CI: 0.56,1.00) and 61.33%(95%CI: 0.20,0.82).The accuracy, sensitivity and specificity of three radiologists' assessment were66.23%(95% CI: 0.55,0.76), 61.50%(95% CI: 0.43,0.78) and 68.62%(95% CI: 0.55,0.80); 55.84%(95% CI: 0.45,0.66),69.25%(95% CI: 0.50,0.84) and 49.13%(95% CI: 0.36,0.62); 55.84%(95% CI: 0.45,0.66), 69.23%(95% CI: 0.50,0.84) and 47.06%(95% CI: 0.34,0.61), respectively. CONCLUSION: T1CE-based radiomics showed better classification performance compared with radiologists' assessment.The radiomics modelwas promising in differentiating pseudoprogression from true progression.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/terapia , Medios de Contraste , Progresión de la Enfermedad , Femenino , Glioblastoma/terapia , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Dosis de Radiación , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
11.
J Magn Reson Imaging ; 49(5): 1263-1274, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30623514

RESUMEN

BACKGROUND: Accurate glioma grading plays an important role in patient treatment. PURPOSE: To investigate the influence of varied texture retrieving models on the efficacy of grading glioma with support vector machine (SVM). STUDY TYPE: Retrospective. POPULATION: In all, 117 glioma patients including 25, 29, and 63 grade II, III, and IV gliomas, respectively, based on WHO 2007. FIELD STRENGTH/SEQUENCE: 3.0T MRI/ T1 WI, T2 fluid-attenuated inversion recovery, contrast enhanced T1 , arterial spinal labeling, diffusion-weighted imaging (0, 30, 50, 100, 200, 300, 500, 800, 1000, 1500, 2000, 3000, and 3500 sec/mm2 ), and dynamic contrast-enhanced. ASSESSMENT: Texture attributes from 30 parametric maps were retrieved using four models, including Global, gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size-zone matrix (GLSZM). Attributes derived from varied models were input into radial basis function SVM (RBF-SVM) combined with attribute selection using SVM-recursive feature elimination (SVM-RFE). The SVM model was trained and established with 80% randomly selected data of each category using 10-fold crossvalidation. The model performance was further tested using the remaining 20% data. STATISTICAL TESTS: Ten-fold crossvalidation was used to validate the model performance. RESULTS: Based on 30 parametric maps, 90, 240, 390, or 390 texture attributes were retrieved using the Global, GLCM, GLRLM, or GLSZM model, respectively. SVM-RFE was able to reduce attribute redundancy as well as improve RBF-SVM performance. Training data were oversampled by applying the Synthetic Minority Oversampling Technique (SMOTE) method to overcome the data imbalance problem; test results were able to further demonstrate the classifying performance of the final models. GLSZM using gray-level 64 was the optimal model to retrieve powerful image texture attributes to produce enough classifying power with an accuracy / area under the curve of 0.760/0.867 for the training and 0.875/0.971 for the independent test. Fifteen attributes were selected with SVM-RFE to provide comparable classifying efficacy. DATA CONCLUSION: When using image textures-based SVM classification of gliomas, the GLSZM model in combination with gray-level 64 and attribute selection may be an optimized solution. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1263-1274.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Clasificación del Tumor , Reproducibilidad de los Resultados , Estudios Retrospectivos , Máquina de Vectores de Soporte
12.
Nanotechnology ; 30(3): 034004, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30452391

RESUMEN

Phase transition from the semiconducting hexagonal (2H) phase to the metallic monoclinic (1T') phase in two-dimensional (2D) transition metal dichalcogenides like MoTe2 is not only of great importance in fundamental study but also of technological significance for broad device applications. Here we report a universal, facile, scalable and reversible phase engineering technique (between 2H and 1T' phases) for both monolayer and few-layer MoTe2 based on a soft hydrogen plasma treatment. The 2H â†’ 1T' transition was confirmed by a series of characterizations including Raman spectra and mapping studies, XPS analysis and FET device measurements at varying temperatures. We attribute the phase transition to the warping of Te-Mo bonds and the lateral sliding of the top Te-layer induced by the soft hydrogen ion bombardment according to both the structural and electronic characterizations as well as the horizontal comparison with the cases of Ar or O2 plasma treatment. We have also prepared a 2D heterostructure containing periodical 2H and 1T' MoTe2 and showed that such phase transition can be readily reversed by post annealing. These results thus provide a robust and efficient approach for the phase engineering of monolayer and few-layer MoTe2 and could aid the development of 2D optoelectronic, memory and reconfigurable devices.

13.
BMC Cancer ; 18(1): 215, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467012

RESUMEN

BACKGROUND: The methylation status of oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter has been associated with treatment response in glioblastoma(GBM). Using pre-operative MRI techniques to predict MGMT promoter methylation status remains inconclusive. In this study, we investigated the value of features from structural and advanced imagings in predicting the methylation of MGMT promoter in primary glioblastoma patients. METHODS: Ninety-two pathologically confirmed primary glioblastoma patients underwent preoperative structural MR imagings and the efficacy of structural image features were qualitatively analyzed using Fisher's exact test. In addition, 77 of the 92 patients underwent additional advanced MRI scans including diffusion-weighted (DWI) and 3-diminsional pseudo-continuous arterial spin labeling (3D pCASL) imaging. Apparent diffusion coefficient (ADC) and relative cerebral blood flow (rCBF) values within the manually drawn region-of-interest (ROI) were calculated and compared using independent sample t test for their efficacies in predicting MGMT promoter methylation. Receiver operating characteristic curve (ROC) analysis was used to investigate the predicting efficacy with the area under the curve (AUC) and cross validations. Multiple-variable logistic regression model was employed to evaluate the predicting performance of multiple variables. RESULTS: MGMT promoter methylation was associated with tumor location and necrosis (P <  0.05). Significantly increased ADC value (P <  0.001) and decreased rCBF (P <  0.001) were associated with MGMT promoter methylation in primary glioblastoma. The ADC achieved the better predicting efficacy than rCBF (ADC: AUC, 0.860; sensitivity, 81.1%; specificity, 82.5%; vs rCBF: AUC, 0.835; sensitivity, 75.0%; specificity, 78.4%; P = 0.032). The combination of tumor location, necrosis, ADC and rCBF resulted in the highest AUC of 0.914. CONCLUSION: ADC and rCBF are promising imaging biomarkers in clinical routine to predict the MGMT promoter methylation in primary glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/metabolismo , Imagen por Resonancia Magnética , Proteínas Supresoras de Tumor/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Femenino , Glioblastoma/diagnóstico , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad , Proteínas Supresoras de Tumor/genética , Adulto Joven
14.
J Magn Reson Imaging ; 48(6): 1518-1528, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29573085

RESUMEN

BACKGROUND: Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. PURPOSE/HYPOTHESIS: To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. STUDY TYPE: Retrospective; radiomics. POPULATION: A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. FIELD STRENGTH/SEQUENCE: 3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images. ASSESSMENT: After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. STATISTICAL TESTS: Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. RESULTS: Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. DATA CONCLUSION: Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiografía , Adulto , Algoritmos , Área Bajo la Curva , Diagnóstico por Computador/métodos , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Clasificación del Tumor , Reconocimiento de Normas Patrones Automatizadas , Curva ROC , Estudios Retrospectivos , Máquina de Vectores de Soporte , Adulto Joven
15.
Nanotechnology ; 29(45): 455707, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30160236

RESUMEN

Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) offer attractive prospects for practical applications by combining unique physical properties that are distinct from those of traditional structures. In this paper, we demonstrate a three-stage chemical vapor deposition method for the growth of bilayer MoS2-WS2/WS2 heterostructures with the bottom layers being the lateral MoS2-center/WS2-edge monolayer heterostructures and the top layers being the WS2 monolayers. The alternative growth of lateral and vertical heterostructures can be realized by adjusting both the temperature and the carrier gas flow direction. The combined effect of both reverse gas flow and higher growing temperature can promote the epitaxial growth of second layer on the activated nucleation centers of the first monolayer heterostructures. By using customized temperature profiles, single heterostructures including monolayer lateral MoS2-WS2 heterostructures and bilayer lateral WS2(2L)-MoS2(2L) heterostructures could also be obtained. Atomic force microscopy, photoluminescence and Raman mapping studies clearly reveal that these different heterostructure samples are highly uniform. These results thus provide a promising and efficient method for the synthesis of complex heterostructures based on different TMDs materials, which would greatly expand the heterostructure family and broaden their applications.

16.
Phys Chem Chem Phys ; 20(38): 25078-25084, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30250949

RESUMEN

Two transparent graphene-metal nanoparticle (NP) hybrid schemes, namely Au NPs covered by graphene layers and Au NPs encapsulated by graphene layers, are presented and the effect of graphene on the localized surface plasmon resonance of metal NPs is systematically investigated. For both schemes, the direct contact of graphene with Au NPs would strongly tune the resonant frequency due to the electron transfer from Au NPs to graphene. Such electron transfer is demonstrated by comparing the absorption spectra of Au NPs with different free electron densities between calculation results via FDTD simulation and experimental results, comparing Raman properties of graphene between pure graphene and the Au-NP/graphene hybrid nanostructure, correlating the electron doping concentration in graphene with the electron density change in Au NPs, and ruling out the possible mechanism of the change of the effective refractive index of Au NPs. Such an effective tuning of the resonant frequency may shed light on the future applications of 2D based materials in plasmonic devices.

17.
BMC Med Imaging ; 18(1): 26, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189858

RESUMEN

BACKGROUND: As a common clinical symptom that often bothers midlife females, migraine is closely associated with perimenopause. Previous studies suggest that one of the most prominent triggers is the sudden decline of estrogen during perimenopausal period. Hormone replacement therapy (HRT) is widely used to prevent this suffering in perimenopausal women, but effective diagnostic system is lacked for quantifying the severity of the diseaase. To avoid the abuse and overuse of HRT, we propose to conduct a diagnostic trial using multimodal MRI techniques to quantify the severity of these perimenopausal migraineurs who are susceptible to the decline of estrogen. METHODS: Perimenopausal women suffering from migraine will be recruited from the pain clinic of our hospital. Perimenopausal women not suffering from any kind of headache will be recruited from the local community. Clinical assessment and multi-modal MR imaging examination will be conducted. A follow up will be conducted once half year within 3 years. Pain behavior, neuropsychology scores, fMRI analysis combined with suitable statistical software will be used to reveal the potential association between these above traits and the susceptibility of migraine. DISCUSSION: Multi-modal imaging features of both healthy controls and perimenopausal women who are susceptible to estrogen decline will be acquired. Imaging features will include volumetric characteristics, white matter integrity, functional characteristics, topological properties, and perfusion properties. Clinical information, such as basic information, blood estrogen level, information of migraine, and a bunch of neurological scale will also be used for statistic assessment. This clinical trial would help to build an effective screen system for quantifying the severity of illness of those susceptible women during the perimenopausal period. TRIAL REGISTRATION: This study has already been registered at Clinical Trials. gov (ID: NCT02820974 ). Registration date: September 28th, 2014.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Trastornos Migrañosos/diagnóstico por imagen , Perimenopausia/sangre , Adulto , Estudios de Casos y Controles , Estrógenos/sangre , Femenino , Humanos , Persona de Mediana Edad , Trastornos Migrañosos/sangre , Imagen Multimodal , Clínicas de Dolor , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Programas Informáticos
18.
Nano Lett ; 17(10): 6391-6396, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28876943

RESUMEN

Interfacing light-sensitive semiconductors with graphene can afford high-gain phototransistors by the multiplication effect of carriers in the semiconductor layer. So far, most devices consist of one semiconductor light-absorbing layer, where the lack of internal built-in field can strongly reduce the quantum efficiency and bandwidth. Here, we demonstrate a much improved graphene phototransistor performances using an epitaxial organic heterostructure composed of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and pentacene as the light-absorbing layer. Compared with single light-absorbing material, the responsivity and response time can be simultaneously improved by 1 and 2 orders of magnitude over a broad band of 400-700 nm, under otherwise the same experimental conditions. As a result, the external quantum efficiency increases by over 800 times. Furthermore, the response time of the heterostructured phototransistor is highly gate-tunable down to sub-30 µs, which is among the fastest in the sensitized graphene phototransistors interfacing with electrically passive light-absorbing semiconductors. We show that the improvement is dominated by the efficient electron-hole pair dissociation due to interfacial built-in field rather than bulk absorption. The structure demonstrated here can be extended to many other organic and inorganic semiconductors, which opens new possibilities for high-performance graphene-based optoelectronics.

19.
J Headache Pain ; 19(1): 24, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29541875

RESUMEN

BACKGROUND: The incidence of pain disorders in women is higher than in men, making gender differences in pain a research focus. The human insular cortex is an important brain hub structure for pain processing and is divided into several subdivisions, serving different functions in pain perception. Here we aimed to examine the gender differences of the functional connectivities (FCs) between the twelve insular subdivisions and selected pain-related brain structures in healthy adults. METHODS: Twenty-six healthy males and 11 age-matched healthy females were recruited in this cross-sectional study. FCs between the 12 insular subdivisions (as 12 regions of interest (ROIs)) and the whole brain (ROI-whole brain level) or 64 selected pain-related brain regions (64 ROIs, ROI-ROI level) were measured between the males and females. RESULTS: Significant gender differences in the FCs of the insular subdivisions were revealed: (1) The FCs between the dorsal dysgranular insula (dId) and other brain regions were significantly increased in males using two different techniques (ROI-whole brain and ROI-ROI analyses); (2) Based on the ROI-whole brain analysis, the FC increases in 4 FC-pairs were observed in males, including the left dId - the right median cingulate and paracingulate/ right posterior cingulate gyrus/ right precuneus, the left dId - the right median cingulate and paracingulate, the left dId - the left angular as well as the left dId - the left middle frontal gyrus; (3) According to the ROI-ROI analysis, increased FC between the left dId and the right rostral anterior cingulate cortex was investigated in males. CONCLUSION: In summary, the gender differences in the FCs of the insular subdivisions with pain-related brain regions were revealed in the current study, offering neuroimaging evidence for gender differences in pain processing. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02820974 . Registered 28 June 2016.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma/métodos , Percepción del Dolor/fisiología , Caracteres Sexuales , Adulto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
20.
Nanotechnology ; 28(10): 105301, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28139464

RESUMEN

Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA