Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Ecol ; 48(1): 51-70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34611747

RESUMEN

Bark stripping by mammals is a major problem in managed conifer forests worldwide. In Australia, bark stripping in the exotic plantations of Pinus radiata is mainly caused by native marsupials and results in reduced survival, growth, and in extreme cases death of trees. Herbivory is influenced by a balance between primary metabolites that are sources of nutrition and secondary metabolites that act as defences. Identifying the compounds that influence herbivory may be a useful tool in the management of forest systems. This study aimed to detect and identify both constitutive and induced compounds that are associated with genetic differences in susceptibility of two-year-old P. radiata trees to bark stripping by marsupials. An untargeted profiling of 83 primary and secondary compounds of the needles and bark samples from 21 susceptible and 21 resistant families was undertaken. These were among the most and least damaged families, respectively, screened in a trial of 74 families that were exposed to natural field bark stripping by marsupials. Experimental plants were in the same field trial but protected from bark stripping and a subset were subjected to artificial bark stripping to examine induced and constitutive chemistry differences between resistant and susceptible families. Machine learning (random forest), partial least squares plus discriminant analysis (PLS-DA), and principal components analysis with discriminant analysis (PCA-DA), as well as univariate methods were used to identify the most important totals by compound group and individual compounds differentiating the resistant and susceptible families. In the bark, the constitutive amount of two sesquiterpenoids - bicyclogermacrene and an unknown sesquiterpenoid alcohol -were shown to be of higher levels in the resistant families, whereas the constitutive sugars, fructose, and glucose, as well individual phenolics, were higher in the more susceptible families. The chemistry of the needles was not useful in differentiating the resistant and susceptible families to marsupial bark stripping. After artificial bark stripping, the terpenes, sugars, and phenolics responded in both the resistant and susceptible families by increasing or reducing amounts, which leveled the differences in the amounts of the compounds between the different resistant and susceptible classes observed at the constitutive level. Overall, based on the families with extreme values for less and more susceptibility, differences in the amounts of secondary compounds were subtle and susceptibility due to sugars may outweigh defence as the cause of the genetic variation in bark stripping observed in this non-native tree herbivory system.


Asunto(s)
Marsupiales , Pinus , Animales , Preescolar , Herbivoria , Humanos , Fenotipo , Pinus/genética , Corteza de la Planta
2.
Heredity (Edinb) ; 127(6): 498-509, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663917

RESUMEN

Secondary metabolites are suggested as a major mechanism explaining genetic variation in herbivory levels in Pinus radiata. The potential to incorporate these chemical traits into breeding/deployment programmes partly depends on the presence of additive genetic variation for the relevant chemical traits. In this study, near-infrared spectroscopy was used to quantify the constitutive and induced levels of 54 compounds in the bark of trees from 74 P. radiata full-sib families. The trees sampled for chemistry were protected from browsing and induced levels were obtained by subjecting half of the trees to artificial bark stripping. The treatment effect on bark chemistry was assessed along with narrow-sense heritability, the significance of non-additive genetic effects and the additive genetic correlations of compounds with bark stripping by mammalian herbivores that was observed in unprotected replicates of the field trial. The results indicated: (i) significant additive genetic variation, with low-moderate narrow-sense heritability estimates for most compounds; (ii) while significant induced effects were detected for some chemicals, no significant genetic variation in inducibility was detected; and (iii) sugars, fatty acids and a diterpenoid positively genetically correlated while a sesquiterpenoid negatively genetically correlated with bark stripping by the mammalian herbivore, the Bennett's wallaby (Macropus rufogriseus). At the onset of browsing, a trade-off with height was detected for selecting higher amounts of this sesquiterpenoid. However, overall, results showed potential to incorporate chemical traits into breeding/deployment programmes. The quantitative genetic analyses of the near infrared predicted chemical traits produced associations with mammalian bark stripping that mostly conform with those obtained using standard wet chemistry.


Asunto(s)
Pinus , Animales , Variación Genética , Herbivoria , Humanos , Pinus/genética , Corteza de la Planta , Fitomejoramiento
3.
PLoS One ; 18(7): e0283563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494370

RESUMEN

Determining the extent and distribution of genetic diversity is an essential component of plant breeding. In the present study, we explored the genetic diversity and population structure of Vernonia amygdalina, a fodder, vegetable and medicinal species of Africa and some parts of Yemen. Most empirical studies demonstrate that populations that are separated by geographic or ecological factors may experience genetic differentiation resulting from restricted gene flow between populations. A total of 238 individuals were sampled from two populations: i) Lake Victoria crescent (LVC) and ii) Southern and Eastern Lake Kyoga basin (SEK) agroecological zones of Uganda and genotyped using DArT platform. Of the two populations, the overall mean observed heterozygosity (Ho) was low to medium (Ho = 0.07[silicoDArTs] and 0.2[SNPs]). Inbreeding levels were also very low (-0.04 to -0.08) suggesting the presence of random mating. Partitioning of genetic structure in the two populations indicated that SEK exhibited a higher genetic diversity than LVC. The principal coordinates analysis (PCA) showed no geographical structuring, consistent with the low genetic differentiation (Fst = 0.00) and the low Euclidean genetic distance (1.38-1.39) between the LVC and SEK populations. However, STRUCTURE analysis with admixture models revealed weak possible genetic clusters with very small genetic distance among them. Overall, the results suggest low genetic diversity and weak genetic differentiation between the two populations. One possible explanation of the results could be the presence of human assisted gene flow over long distances.


Asunto(s)
Variación Genética , Vernonia , Humanos , Uganda , Fitomejoramiento , Flujo Genético , Genética de Población , Repeticiones de Microsatélite/genética
4.
BMC Res Notes ; 15(1): 74, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193660

RESUMEN

OBJECTIVE: A sustainable way of providing essential nutrients from crops for the poor and undernourished is biofortification, through plant breeding. This study characterised the intraspecific variation of selected nutritional elements in the flakes and seeds of Ugandan jackfruit (Artocarpus heterophyllus) plus the phytochemical composition of leaves. The overall aim was to explore possibilities of selecting for varieties that are higher in selected essential nutrients. Selecting for nutrient dense crops has been mostly done for annual agricultural crops, and rarely for perennial fruit trees. RESULTS: Uganda's Jackfruit has high macronutrients, especially magnesium and calcium. This study revealed that the amounts of these macronutrients were higher than those found in commonly consumed fruits, giving jackfruit a nutritional advantage with respect to these nutrients. The varieties sampled also differed significantly (p < 0.01) for some nutrients such as vitamin C, crude fat, crude fibre, total soluble solids and juice yield, highlighting the potential for selection for targeted nutritional gains. The seeds however, had less amounts of most of the quantified nutrients that also differed among the varieties. Significant intraspecific variation of the leaf total phenolics was also observed. With regard to the quantified nutritional elements in the flakes, the ethno-varieties were separated in space along PC1 (p < 0.001), PC2 (p < 0.001) and PC3 (p < 0.01) indicating their distinctness.


Asunto(s)
Artocarpus , Artocarpus/química , Frutas/química , Fitomejoramiento , Semillas/química , Uganda
5.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36218439

RESUMEN

The integration of genomic data into genetic evaluations can facilitate the rapid selection of superior genotypes and accelerate the breeding cycle in trees. In this study, 390 trees from 74 control-pollinated families were genotyped using a 36K Axiom SNP array. A total of 15,624 high-quality SNPs were used to develop genomic prediction models for mammalian bark stripping, tree height, and selected primary and secondary chemical compounds in the bark. Genetic parameters from different genomic prediction methods-single-trait best linear unbiased prediction based on a marker-based relationship matrix (genomic best linear unbiased prediction), multitrait single-step genomic best linear unbiased prediction, which integrated the marker-based and pedigree-based relationship matrices (single-step genomic best linear unbiased prediction) and the single-trait generalized ridge regression-were compared to equivalent single- or multitrait pedigree-based approaches (ABLUP). The influence of the statistical distribution of data on the genetic parameters was assessed. Results indicated that the heritability estimates were increased nearly 2-fold with genomic models compared to the equivalent pedigree-based models. Predictive accuracy of the single-step genomic best linear unbiased prediction was higher than the ABLUP for most traits. Allowing for heterogeneity in marker effects through the use of generalized ridge regression did not markedly improve predictive ability over genomic best linear unbiased prediction, arguing that most of the chemical traits are modulated by many genes with small effects. Overall, the traits with low pedigree-based heritability benefited more from genomic models compared to the traits with high pedigree-based heritability. There was no evidence that data skewness or the presence of outliers affected the genomic or pedigree-based genetic estimates.


Asunto(s)
Herbivoria , Pinus , Fitomejoramiento , Animales , Genómica/métodos , Genotipo , Modelos Genéticos , Fenotipo , Pinus/genética , Corteza de la Planta , Polimorfismo de Nucleótido Simple , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA