Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Cell ; 169(6): 971-973, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575673
3.
Cell ; 167(3): 583-585, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768877
4.
Cell ; 136(5): 939-51, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19249087

RESUMEN

The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in regulating life span, dauer, metabolism, and stress. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. An RNAi screen for serine/threonine protein phosphatases that counterbalance the effect of the kinases in the IIS pathway identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme. Modulation of pptr-1 affects IIS pathway-associated phenotypes including life span, dauer, stress resistance, and fat storage. We show that PPTR-1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking conservation, mammalian B56beta regulates Akt phosphorylation at Thr 308 in 3T3-L1 adipocytes. In C. elegans, this ultimately leads to changes in subcellular localization and transcriptional activity of the forkhead transcription factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit in regulating insulin signaling through AKT dephosphorylation, thereby having widespread implications in cancer and diabetes research.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad , Monoéster Fosfórico Hidrolasas/análisis , Fosforilación , Receptores de Superficie Celular/metabolismo
5.
Nature ; 466(7305): 498-502, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20613724

RESUMEN

The insulin/IGF-1 signalling (IIS) pathway has diverse roles from metabolism to longevity. In Caenorhabditis elegans, the single forkhead box O (FOXO) homologue, DAF-16, functions as the major target of the IIS pathway. One of two isoforms, DAF-16a, is known to regulate longevity, stress response and dauer diapause. However, it remains unclear how DAF-16 achieves its specificity in regulating these various biological processes. Here we identify a new isoform, DAF-16d/f, as an important isoform regulating longevity. We show that DAF-16 isoforms functionally cooperate to modulate IIS-mediated processes through differential tissue enrichment, preferential modulation by upstream kinases, and regulating distinct and overlapping target genes. Promoter-swapping experiments show both the promoter and the coding region of DAF-16 are important for its function. Importantly, in mammals, four FOXO genes have overlapping and different functions, and in C. elegans, a single FOXO/DAF-16 uses distinct isoforms to fine-tune the IIS-mediated processes in the context of a whole organism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Longevidad/fisiología , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Mutación , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Transgenes
6.
PLoS Genet ; 7(4): e1001377, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533078

RESUMEN

The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-ß signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-ß signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-ß signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Longevidad/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Receptor de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Insulina/metabolismo , Mutación , Fenotipo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Interferencia de ARN , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal
7.
Elife ; 42015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26196144

RESUMEN

In Caenorhabditis elegans, ablation of germline stem cells (GSCs) extends lifespan, but also increases fat accumulation and alters lipid metabolism, raising the intriguing question of how these effects might be related. Here, we show that a lack of GSCs results in a broad transcriptional reprogramming in which the conserved detoxification regulator SKN-1/Nrf increases stress resistance, proteasome activity, and longevity. SKN-1 also activates diverse lipid metabolism genes and reduces fat storage, thereby alleviating the increased fat accumulation caused by GSC absence. Surprisingly, SKN-1 is activated by signals from this fat, which appears to derive from unconsumed yolk that was produced for reproduction. We conclude that SKN-1 plays a direct role in maintaining lipid homeostasis in which it is activated by lipids. This SKN-1 function may explain the importance of mammalian Nrf proteins in fatty liver disease and suggest that particular endogenous or dietary lipids might promote health through SKN-1/Nrf.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células Germinativas/fisiología , Metabolismo de los Lípidos , Factores de Transcripción/metabolismo , Animales
8.
Cell Metab ; 16(4): 526-37, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23040073

RESUMEN

SKN-1/Nrf plays multiple essential roles in development and cellular homeostasis. We demonstrate that SKN-1 executes a specific and appropriate transcriptional response to changes in available nutrients, leading to metabolic adaptation. We isolated gain-of-function (gf) alleles of skn-1, affecting a domain of SKN-1 that binds the transcription factor MXL-3 and the mitochondrial outer membrane protein PGAM-5. These skn-1(gf) mutants perceive a state of starvation even in the presence of plentiful food. The aberrant monitoring of cellular nutritional status leads to an altered survival response in which skn-1(gf) mutants transcriptionally activate genes associated with metabolism, adaptation to starvation, aging, and survival. The triggered starvation response is conserved in mice with constitutively activated Nrf and may contribute to the tumorgenicity associated with activating Nrf mutations in mammalian somatic cells. Our findings delineate an evolutionarily conserved metabolic axis of SKN-1/Nrf, further establishing the complexity of this pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Inanición , Transactivadores/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
9.
Cell Metab ; 15(5): 713-24, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560223

RESUMEN

The TOR kinase, which is present in the functionally distinct complexes TORC1 and TORC2, is essential for growth but associated with disease and aging. Elucidation of how TOR influences life span will identify mechanisms of fundamental importance in aging and TOR functions. Here we show that when TORC1 is inhibited genetically in C. elegans, SKN-1/Nrf, and DAF-16/FoxO activate protective genes, and increase stress resistance and longevity. SKN-1 also upregulates TORC1 pathway gene expression in a feedback loop. Rapamycin triggers a similar protective response in C. elegans and mice, but increases worm life span dependent upon SKN-1 and not DAF-16, apparently by interfering with TORC2 along with TORC1. TORC1, TORC2, and insulin/IGF-1-like signaling regulate SKN-1 activity through different mechanisms. We conclude that modulation of SKN-1/Nrf and DAF-16/FoxO may be generally important in the effects of TOR signaling in vivo and that these transcription factors mediate an opposing relationship between growth signals and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
10.
Antioxid Redox Signal ; 14(4): 623-34, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20673162

RESUMEN

The Caenorhabditis elegans Forkhead box O transcription factor (FOXO) homolog DAF-16 functions as a central mediator of multiple biological processes such as longevity, development, fat storage, stress resistance, and reproduction. In C. elegans, similar to other systems, DAF-16 functions as the downstream target of a conserved, well-characterized insulin/insulin-like growth factor (IGF)-1 signaling pathway. This cascade is comprised of an insulin/IGF-1 receptor, which signals through a conserved PI 3-kinase/AKT pathway that ultimately downregulates DAF-16/FOXO activity. Importantly, studies have shown that multiple pathways intersect with the insulin/IGF-1 signaling pathway and impinge on DAF-16 for their regulation. Therefore, in C. elegans, the single FOXO family member, DAF-16, integrates signals from several pathways and then regulates its many downstream target genes.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Humanos , Modelos Biológicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
PLoS One ; 5(9)2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20862331

RESUMEN

The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.


Asunto(s)
Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Espectrometría Raman/métodos , Coloración y Etiquetado/métodos , Animales , Caenorhabditis elegans/genética , Colorantes/análisis , Colorantes/metabolismo , Grasas/química , Transducción de Señal
12.
Curr Biol ; 19(15): R657-66, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19674551

RESUMEN

The processes that determine an organism's lifespan are complex and poorly understood. Yet single gene manipulations and environmental interventions can substantially delay age-related morbidity. In this review, we focus on the two most potent modulators of longevity: insulin/insulin-like growth factor 1 (IGF-1) signaling and dietary restriction. The remarkable molecular conservation of the components associated with insulin/IGF-1 signaling and dietary restriction allow us to understand longevity from a multi-species perspective. We summarize the most recent findings on insulin/IGF-1 signaling and examine the proteins and pathways that reveal a more genetic basis for dietary restriction. Although insulin/IGF-1 signaling and dietary restriction pathways are currently viewed as being independent, we suggest that these two pathways are more intricately connected than previously appreciated. We highlight that numerous interactions between these two pathways can occur at multiple levels. Ultimately, both the insulin/IGF-1 pathway and the pathway that mediates the effects of dietary restriction have evolved to respond to the nutritional status of an organism, which in turn affects its lifespan.


Asunto(s)
Restricción Calórica , Insulina/metabolismo , Longevidad/fisiología , Modelos Biológicos , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Mitocondrias/metabolismo , Odorantes , Sirtuinas/metabolismo , Especificidad de la Especie
13.
Cell Cycle ; 8(23): 3878-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19901535

RESUMEN

Signal transduction pathways are tightly regulated by phosphorylation-dephosphorylation cycles and yet the mammalian genome contains far more genes that encode for protein kinases than protein phosphatases. Therefore, to target specific substrates, many phosphatases associate with distinct regulatory subunits and thereby modulate multiple cellular processes. One such example is the C. elegans PP2A regulatory subunit PPTR-1 that negatively regulates the insulin/insulin-like growth factor signaling pathway to modulate longevity, dauer diapause, fat metabolism and stress resistance. PPTR-1, as well as its mammalian homolog B56beta, specifically target the PP2A enzyme to AKT and mediate the dephosphorylation of this important kinase at a conserved threonine residue. In C. elegans, the major consequence of this modulation is activation of the FOXO transcription factor homolog DAF-16, which in turn regulates transcription of its many target genes involved in longevity and stress resistance. Understanding the function of B56 subunits may have important consequences in diseases such as Type 2 diabetes and cancer where the balance of Akt phosphorylation is deregulated.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Fosforilación , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA