Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biol ; 158(3): 427-33, 2002 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12147674

RESUMEN

Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). Here, we report the identification of a neuronal binding partner of gigaxonin. Results obtained from yeast two-hybrid screening, cotransfections, and coimmunoprecipitations demonstrate that gigaxonin binds directly to microtubule-associated protein (MAP)1B light chain (LC; MAP1B-LC), a protein involved in maintaining the integrity of cytoskeletal structures and promoting neuronal stability. Studies using double immunofluorescent microscopy and ultrastructural analysis revealed physiological colocalization of gigaxonin with MAP1B in neurons. Furthermore, in transfected cells the specific interaction of gigaxonin with MAP1B is shown to enhance the microtubule stability required for axonal transport over long distance. At least two different mutations identified in GAN patients (Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, et al. 2000. Nat. Genet. 26:370-374.) lead to loss of gigaxonin-MAP1B-LC interaction. The devastating axonal degeneration and neuronal death found in GAN patients point to the importance of gigaxonin for neuronal survival. Our findings may provide important insights into the pathogenesis of neurodegenerative disorders related to cytoskeletal abnormalities.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Animales , Unión Competitiva/fisiología , Encéfalo/metabolismo , Encéfalo/ultraestructura , Células Cultivadas , Colchicina/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/ultraestructura , Técnica del Anticuerpo Fluorescente , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/fisiopatología , Ratones , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación/fisiología , Sistema Nervioso/fisiopatología , Sistema Nervioso/ultraestructura , Neuronas/ultraestructura , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Transfección
2.
J Cell Biol ; 163(2): 223-9, 2003 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-14581450

RESUMEN

Disruption of the BPAG1 (bullous pemphigoid antigen 1) gene results in progressive deterioration in motor function and devastating sensory neurodegeneration in the null mice. We have previously demonstrated that BPAG1n1 and BPAG1n3 play important roles in organizing cytoskeletal networks in vivo. Here, we characterize functions of a novel BPAG1 neuronal isoform, BPAG1n4. Results obtained from yeast two-hybrid screening, blot overlay binding assays, and coimmunoprecipitations demonstrate that BPAG1n4 interacts directly with dynactin p150Glued through its unique ezrin/radixin/moesin domain. Studies using double immunofluorescent microscopy and ultrastructural analysis reveal physiological colocalization of BPAG1n4 with dynactin/dynein. Disruption of the interaction between BPAG1n4 and dynactin results in severe defects in retrograde axonal transport. We conclude that BPAG1n4 plays an essential role in retrograde axonal transport in sensory neurons. These findings might advance our understanding of pathogenesis of axonal degeneration and neuronal death.


Asunto(s)
Autoantígenos/metabolismo , Transporte Axonal/genética , Axones/metabolismo , Proteínas Portadoras , Colágeno/metabolismo , Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Neuronas Aferentes/metabolismo , Colágenos no Fibrilares , Animales , Animales Recién Nacidos , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/ultraestructura , Axones/ultraestructura , Células COS , Chlorocebus aethiops , Colágeno/química , Colágeno/genética , Colágeno/ultraestructura , Complejo Dinactina , Dineínas/metabolismo , Dineínas/ultraestructura , Distonina , Ganglios Espinales/metabolismo , Ganglios Espinales/ultraestructura , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Células 3T3 NIH , Neuronas Aferentes/ultraestructura , Penfigoide Ampolloso/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Estructura Terciaria de Proteína , Colágeno Tipo XVII
3.
Biochem Biophys Res Commun ; 339(1): 172-9, 2006 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-16297881

RESUMEN

Microtubule-associated proteins (MAPs) are critical regulators of microtubule dynamics and functions, and have long been proposed to be essential for many cellular events including neuronal morphogenesis and functional maintenance. In this study, we report the characterization of a new microtubule-associated protein, we named MAP8. The protein of MAP8 is mainly restricted to the nervous system postnatally in mouse. Its expression could first be detected as early as at embryonic day 10, levels plateau during late embryonic and neonatal periods, and subsequently decrease moderately to remain constant into adulthood. In addition to its carboxyl terminal binding site, the MAP8 polyprotein also contains a functional microtubule-binding domain at its N-terminal segment. The association of the carboxyl terminal of the light chain with actin microfilaments could also be detected. Our findings define MAP8 as a novel microtubule associated protein containing two microtubule binding domains.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Animales Recién Nacidos , Sitios de Unión , Células COS , Chlorocebus aethiops , Ratones , Proteínas Asociadas a Microtúbulos/genética , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Especificidad de Órganos , Estructura Terciaria de Proteína
4.
Hum Mol Genet ; 15(9): 1451-63, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16565160

RESUMEN

Mutations in gigaxonin were identified in giant axonal neuropathy (GAN), an autosomal recessive disorder. To understand how disruption of gigaxonin's function leads to neurodegeneration, we ablated the gene expression in mice using traditional gene targeting approach. Progressive neurological phenotypes and pathological lesions that developed in the GAN null mice recapitulate characteristic human GAN features. The disruption of gigaxonin results in an impaired ubiquitin-proteasome system leading to a substantial accumulation of a novel microtubule-associated protein, MAP8, in the null mutants. Accumulated MAP8 alters the microtubule network, traps dynein motor protein in insoluble structures and leads to neuronal death in cultured wild-type neurons, which replicates the process occurring in GAN null mutants. Defective axonal transport is evidenced by the in vitro assays and is supported by vesicular accumulation in the GAN null neurons. We propose that the axonal transport impairment may be a deleterious consequence of accumulated, toxic MAP8 protein.


Asunto(s)
Transporte Axonal/genética , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Marcación de Gen , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Axones/metabolismo , Axones/patología , Axones/ultraestructura , Química Encefálica/genética , Muerte Celular/genética , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Dineínas/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/toxicidad , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Nervio Ciático/química , Nervio Ciático/metabolismo , Nervio Ciático/fisiología , Nervio Ciático/ultraestructura
5.
Nature ; 416(6879): 442-7, 2002 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-11919635

RESUMEN

Growth, guidance and branching of axons are all essential processes for the precise wiring of the nervous system. Rho family GTPases transduce extracellular signals to regulate the actin cytoskeleton. In particular, Rac has been implicated in axon growth and guidance. Here we analyse the loss-of-function phenotypes of three Rac GTPases in Drosophila mushroom body neurons. We show that progressive loss of combined Rac1, Rac2 and Mtl activity leads first to defects in axon branching, then guidance, and finally growth. Expression of a Rac1 effector domain mutant that does not bind Pak rescues growth, partially rescues guidance, but does not rescue branching defects of Rac mutant neurons. Mosaic analysis reveals both cell autonomous and non-autonomous functions for Rac GTPases, the latter manifesting itself as a strong community effect in axon guidance and branching. These results demonstrate the central role of Rac GTPases in multiple aspects of axon development in vivo, and suggest that axon growth, guidance and branching could be controlled by differential activation of Rac signalling pathways.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/fisiología , Proteínas de Unión al GTP rac/fisiología , Proteína de Unión al GTP rac1/fisiología , Secuencia de Aminoácidos , Animales , Axones/enzimología , División Celular , Movimiento Celular , Drosophila , Proteínas de Drosophila/genética , Genes de Insecto , Datos de Secuencia Molecular , Mutación , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/genética , Proteína RCA2 de Unión a GTP
6.
Development ; 130(6): 1203-13, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12571111

RESUMEN

Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila genome) were made homozygous in a small subset of uniquely labeled MB neurons. Independently mutagenized chromosomes (4600) were screened, yielding defects in neuroblast proliferation, cell size, membrane trafficking, and axon and dendrite morphogenesis. We report mutations that affect these different aspects of morphogenesis and phenotypically characterize a subset. We found that roadblock, which encodes a dynein light chain, exhibits reduced cell number in neuroblast clones, reduced dendritic complexity and defective axonal transport. These phenotypes are nearly identical to mutations in dynein heavy chain Dhc64 and in Lis1, the Drosophila homolog of human lissencephaly 1, reinforcing the role of the dynein complex in cell proliferation, dendritic morphogenesis and axonal transport. Phenotypic analysis of short stop/kakapo, which encodes a large cytoskeletal linker protein, reveals a novel function in regulating microtubule polarity in neurons. MB neurons mutant for flamingo, which encodes a seven transmembrane cadherin, extend processes beyond their wild-type dendritic territories. Overexpression of Flamingo results in axon retraction. Our results suggest that most genes involved in neuronal morphogenesis play multiple roles in different aspects of neural development, rather than performing a dedicated function limited to a specific process.


Asunto(s)
Drosophila/embriología , Drosophila/genética , Cuerpos Pedunculados/embriología , Neuronas/metabolismo , Animales , Axones/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA