Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 310(6): G399-409, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744470

RESUMEN

Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.


Asunto(s)
Amilasas/metabolismo , Colecistoquinina/farmacología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Proteínas de la Membrana/biosíntesis , Páncreas/metabolismo , Proteína Quinasa C/metabolismo , Acetofenonas/farmacología , Animales , Benzopiranos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colecistoquinina/antagonistas & inhibidores , Citosol/efectos de los fármacos , Citosol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Páncreas/efectos de los fármacos , Páncreas/enzimología , Fosforilación , Proteína Quinasa C-delta/efectos de los fármacos , Proteína Quinasa C-delta/metabolismo , Proteínas Qa-SNARE/metabolismo , Ratas , Ratas Sprague-Dawley , Translocación Genética
2.
Genome Res ; 23(8): 1329-38, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23604024

RESUMEN

Commonly used classical inbred mouse strains have mosaic genomes with sequences from different subspecific origins. Their genomes are derived predominantly from the Western European subspecies Mus musculus domesticus, with the remaining sequences derived mostly from the Japanese subspecies Mus musculus molossinus. However, it remains unknown how this intersubspecific genome introgression occurred during the establishment of classical inbred strains. In this study, we resequenced the genomes of two M. m. molossinus-derived inbred strains, MSM/Ms and JF1/Ms. MSM/Ms originated from Japanese wild mice, and the ancestry of JF1/Ms was originally found in Europe and then transferred to Japan. We compared the characteristics of these sequences to those of the C57BL/6J reference sequence and the recent data sets from the resequencing of 17 inbred strains in the Mouse Genome Project (MGP), and the results unequivocally show that genome introgression from M. m. molossinus into M. m. domesticus provided the primary framework for the mosaic genomes of classical inbred strains. Furthermore, the genomes of C57BL/6J and other classical inbred strains have long consecutive segments with extremely high similarity (>99.998%) to the JF1/Ms strain. In the early 20th century, Japanese waltzing mice with a morphological phenotype resembling that of JF1/Ms mice were often crossed with European fancy mice for early studies of "Mendelism," which suggests that the ancestor of the extant JF1/Ms strain provided the origin of the M. m. molossinus genome in classical inbred strains and largely contributed to its intersubspecific genome diversity.


Asunto(s)
Ratones Endogámicos C57BL/genética , Mosaicismo , Animales , Genoma , Genotipo , Endogamia , Ratones , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
3.
Zoolog Sci ; 33(2): 125-31, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27032677

RESUMEN

The Japanese wild population of the medaka fish (Oryzias latipes species complex) comprises two genetically distinct groups, the Northern and the Southern Populations, with boundary populations having a unique genotype. It is thought that the boundary populations have been formed through introgressive hybridization between the two groups, because they are fixed with the Northern alleles at two allozymic loci, with the Southern alleles at two other loci, and have a unique allele at one locus. In this study, we examined the genetic population structure of the boundary populations using genome-wide single nucleotide polymorphism (SNP) data. Most SNPs of the Toyooka population, a typical boundary population, were shared with the Northern Population, some were shared with the Southern Population, and the remaining SNPs were unique to this population, suggesting that the boundary populations originated and diverged from the Northern Population. Further analyses of different populations using SNPs at eight genomic loci indicated that the boundary populations at different locations share similar genomic constitutions, and can be genetically distinguished from typical Northern Populations by unique SNPs. In addition, the boundary populations in the Maruyama River Basin had Northern mitochondrial DNA (mtDNA), while others, from the Fukuda and Kishida River Basins and from the Kumihama Bay area, had Southern mtDNA. These findings suggested that the boundary populations originated from the Northern Population, and then their genomes diverged as a result of geographical isolation, followed by mtDNA introgression from the Southern Population that occurred independently in some populations.


Asunto(s)
Distribución Animal/fisiología , Oryzias/genética , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Variación Genética , Genoma , Japón , Datos de Secuencia Molecular , Filogenia
4.
Pflugers Arch ; 465(2): 271-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23179381

RESUMEN

Non-obese diabetic (NOD) mice have been used as a model for dry mouth. NOD mice lacking the gene encoding E2f1, a transcription factor, develop hyposalivation more rapidly progressively than control NOD mice. However, the model mice are associated with an underlying disease such as diabetes. We have now established E2f1-deficient NOD/severe combined immunodeficiency disease (NOD/SCID.E2f1(-/-)) mice to avoid the development of diabetes (Matsui-Inohara et al., Exp Biol Med (Maywood) 234(12):1525-1536, 2009). In this study, we investigated the pathophysiological features of dry mouth using NOD/SCID.E2f1(-/-) mice. In NOD/SCID.E2f1(-/-) mice, the volume of secreted saliva stimulated with pilocarpine is about one third that of control NOD/SCID mice. In behavioral analysis, NOD/SCID.E2f1(-/-) mice drank plenty of water when they ate dry food, and the frequency and time of water intake were almost double compared with control NOD/SCID mice. Histological analysis of submandibular glands with hematoxylin-eosin stain revealed that NOD/SCID.E2f1(-/-) mice have more ducts than NOD/SCID mice. In western blot analysis, the expression of aquaporin 5 (AQP5), a marker of acinar cells, in parotid and in submandibular glands of NOD/SCID.E2f1(-/-) mice was lower than in NOD/SCID mice. Immunohistochemical analysis of parotid and submandibular acini revealed that the localization of AQP5 in NOD/SCID.E2f1(-/-) mice differs from that in NOD/SCID mice; AQP5 was leaky and diffusively localized from the apical membrane to the cytosol in NOD/SCID.E2f1(-/-) mice. The ubiquitination of AQP5 was detected in submandibular glands of NOD/SCID.E2f1(-/-) mice. These findings suggest that the change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland cause the pathogenesis of hyposalivation in NOD/SCID.E2f1(-/-) mice.


Asunto(s)
Células Acinares/metabolismo , Acuaporina 5/metabolismo , Regulación hacia Abajo , Factor de Transcripción E2F1/genética , Conductos Salivales/metabolismo , Xerostomía/metabolismo , Células Acinares/patología , Animales , Acuaporina 5/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Ingestión de Líquidos , Expresión Génica , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Glándula Parótida/metabolismo , Glándula Parótida/patología , Pilocarpina/farmacología , Conductos Salivales/patología , Salivación/efectos de los fármacos , Salivación/genética , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Ubiquitinación , Xerostomía/genética , Xerostomía/fisiopatología
5.
Nature ; 447(7145): 714-9, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17554307

RESUMEN

Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats. Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published, analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination and developmental genetics. In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including approximately 2,900 new genes, using 5'-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of approximately 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.


Asunto(s)
Evolución Molecular , Genoma/genética , Oryzias/genética , Animales , China , Cromosomas/genética , Proteínas de Peces/genética , Genómica , Humanos , Japón , Oryzias/clasificación , Filogenia , Polimorfismo de Nucleótido Simple/genética , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Taiwán , Factores de Tiempo
6.
BMC Biol ; 10: 46, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22651552

RESUMEN

BACKGROUND: Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern) as a young larva, and switches to a green camouflage coloration (cryptic pattern) in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns. RESULTS: To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST) libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes expressed in larval eyespot markings. This finding suggests that E75 is a strong candidate mediator of the hormone-dependent coordination of larval pattern formation. CONCLUSIONS: This study is one of the most comprehensive molecular analyses of complicated morphological features, and it will serve as a new resource for studying insect mimetic and cryptic pattern formation in general. The wide variety of marking-associated genes (both regulatory and structural genes) identified by our screening indicates that a similar strategy will be effective for understanding other complex traits.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Pigmentos Biológicos/genética , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Mariposas Diurnas/crecimiento & desarrollo , Mariposas Diurnas/metabolismo , Ecdisteroides/genética , Ecdisteroides/metabolismo , Etiquetas de Secuencia Expresada , Genes de Insecto , Proteínas de Insectos/metabolismo , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Melaninas/genética , Melaninas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Pigmentación , Pigmentos Biológicos/metabolismo
7.
J Vet Med Sci ; 85(3): 334-339, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725029

RESUMEN

Previous studies on dolphin electrocardiograms have shown that they are mainly composed of increased negative waves, similar to ungulates. The electrocardiogram waveform was determined by the distribution of the Purkinje fibers. Based on the waveform of the dolphin electrocardiogram, Hamlin predicted that the Purkinje fibers would be distributed within the ventricular muscle, as in ungulates. The purpose of this study was to confirm the histological distribution of Purkinje fibers in dolphins. In the present study, bottlenose dolphin hearts were observed both grossly and histologically, and the effects of Purkinje fiber distribution and cardiac morphology on electrocardiogram waveforms were examined. This study showed that the Purkinje fibers of dolphins run just below the endocardium, as in humans, dogs, and cats, whose electrocardiograms mainly show positive waves. When the cardiac morphology of dolphins was observed carefully, the right ventricle was found to be extremely dilated compared to that of terrestrial mammals. In human recreational divers, right ventricular dilatation is induced by diving. We hypothesized that the dolphin's heart is in a state similar to that of the right heart dilatation in terrestrial animals. The dolphin electrocardiogram waveform was considered to be due to right axis deviation. Based on the above, we concluded that the dolphin electrocardiogram waveform was due to its ability to live in water. We found that the dolphins are genetically related to ungulates, particularly the hippopotamus, but that their hearts have evolved differently.


Asunto(s)
Delfín Mular , Animales , Humanos , Perros , Delfín Mular/fisiología , Tórax , Mamíferos , Electrocardiografía , Ventrículos Cardíacos
8.
PLoS One ; 18(4): e0284353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075046

RESUMEN

Candida albicans can cause two major types of infections: superficial infection and systemic candidiasis. C. albicans infects diverse host niches, owing to a wide range of virulence factors and attributes, such as morphological transitions and phenotypic switching. C. albicans uses glycolysis, followed by alcoholic fermentation or mitochondrial respiration to rapidly generate ATP under aerobic conditions. In this study, we quantified the mRNA expression of several glycolysis-related enzymes associated with the initial phase of environmental changes using two strains: a type strain, NBRC 1385, and a strain from a patient with auto-brewery syndrome, LSEM 550. Additionally, we analyzed the regulation of a rate-limiting enzyme in glycolysis, phosphofructokinase 1 (PFK1). Our results showed that the mRNA expression of enzymes in the middle and last stages of glycolysis and alcoholic fermentation increased, and that of mitochondrial respiration enzymes decreased under short-term anaerobic conditions. Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) administration showed similar results under anaerobic conditions. Moreover, PFK1 maintained its regulatory effect under different conditions; no significant change was observed in its mRNA expression. Our results suggest that C. albicans obtains energy via carbohydrate catabolism in the early phase of environmental change and survives in various parts of the host.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Anaerobiosis , Glucólisis , ARN Mensajero/metabolismo
9.
J Cell Biochem ; 113(4): 1348-58, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22134873

RESUMEN

Matrix metalloproteinase-3 (MMP-3) expression is promoted after pulpotomy, and application of MMP-3 to dental pulp after pulpotomy accelerates angiogenesis and hard tissue formation. However, the mechanism by which MMP-3 promotes dental pulp wound healing is still unclear. Connective tissue growth factor/CCN family 2 (CTGF/CCN2), a protein belonging to the CCN family, is considered to participate in wound healing, angiogenesis, and cell migration. In this study, we examined the involvement of CTGF/CCN2 in MMP-3-induced cell migration in human dental pulp (fibroblast-like) cells. In human dental pulp cells, MMP-3 promoted cell migration, but this effect was clearly blocked in the presence of anti-CTGF/CCN2 antibody. MMP-3 provoked mRNA and protein expression and secretion of CTGF/CCN2 in a concentration- and time-dependent manner. The MMP-3 inhibitor NNGH failed to suppress MMP-3-induced CTGF/CCN2 protein expression. The potent dynamin inhibitor dynasore clearly inhibited MMP-3-induced CTGF/CCN2 expression. These results strongly suggest that MMP-3 induces CTGF/CCN2 production independently of the protease activity of MMP-3 and dependently on dynamin-related endocytosis, which is involved in cell migration in human dental pulp cells.


Asunto(s)
Movimiento Celular , Factor de Crecimiento del Tejido Conjuntivo/biosíntesis , Pulpa Dental/citología , Dinaminas/fisiología , Endocitosis/fisiología , Metaloproteinasa 3 de la Matriz/metabolismo , Secuencia de Bases , Western Blotting , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/genética , Cartilla de ADN , Dinaminas/antagonistas & inhibidores , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Inhibidores de la Metaloproteinasa de la Matriz , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Arch Oral Biol ; 132: 105276, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634536

RESUMEN

OBJECTIVE: The physiological expression of cell division cycle 42 (cdc42) in major salivary glands, and paracellular transport of fluorescein isothiocyanate-dextran (FITC-dextran) in SMIE cells, which regulate cdc42 expression, was investigated to clarify the involvement of cdc42 in salivary production. DESIGN: The physiological expression of cdc42 in the rat submandibular gland, parotid gland, sublingual gland, and SMIE cells was detected using SDS-PAGE and western blotting. The paracellular transport of FITC-dextran in transwells was compared in transfected SMIE cells, exhibiting up- or downregulated cdc42 expression. RESULTS: Cdc42 was expressed in all major salivary glands and SMIE cells. SMIE cells transfected with the cdc42 plasmid had an increase efflux. In addition, SMIE cells transfected with the cdc42 siRNA showed decreased efflux. CONCLUSION: We suggest that cdc42 enhances paracellular transport in salivary glands without any morphological changes, including cell-cell adhesion.


Asunto(s)
Glándula Sublingual , Glándula Submandibular , Proteína de Unión al GTP cdc42 , Animales , Western Blotting , Glándula Parótida , Ratas , Glándulas Salivales
11.
Arch Oral Biol ; 129: 105209, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274846

RESUMEN

OBJECTIVE: Secretory immunoglobulin A (sIgA) is important for mucosal immunity due to the inhibition of pathogen infection. The submandibular gland is known to secrete more sIgA than the parotid and sublingual glands. In this study, we focused on the relationship between the secretion of accumulated intracellular sIgA and ß-adrenergic receptor stimulation, and clarified the autonomic regulatory mechanism of sIgA secretion in submandibular gland cells using dispersed gland cells. DESIGN: Sprague-Dawley rats (male, 6 weeks old, 200-250 g) were euthanized and their submandibular glands were removed. Dispersed submandibular gland cells placed in Krebs-Ringer-Bicarbonate solution were stimulated by autonomic nerve agonists. The concentration of secreted sIgA was measured using a rat IgA ELISA kit. The results were analysed using ANOVA and Tukey's test. RESULTS: Cells stimulated with the non-selective ß-adrenoreceptor agonist, isoprenaline, secreted significantly more sIgA compared with the unstimulated control. The ß2-adrenoreceptor agonist, fenoterol, caused significantly more sIgA secretion than the control, and more sIgA secretion than the ß1-adrenoreceptor agonist, xamoterol. sIgA secretion by isoprenaline stimulation was dose dependent. Inhibition of the ß receptor by propranolol completely blocked sIgA secretion following isoprenaline stimulation. CONCLUSION: Stimulation of ß receptors could result in more secretion of intracellularly accumulated sIgA compared with stimulation of other autonomic receptors in the autonomic modulation of mucosal immunity.


Asunto(s)
Inmunoglobulina A Secretora , Glándula Submandibular , Agonistas Adrenérgicos beta/farmacología , Animales , Isoproterenol/farmacología , Masculino , Glándula Parótida , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta , Saliva
12.
Elife ; 102021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34240705

RESUMEN

Salivary fluid secretion involves an intricate choreography of membrane transporters to result in the trans-epithelial movement of NaCl and water into the acinus lumen. Current models are largely based on experimental observations in enzymatically isolated cells where the Ca2+ signal invariably propagates globally and thus appears ideally suited to activate spatially separated Cl and K channels, present on the apical and basolateral plasma membrane, respectively. We monitored Ca2+ signals and salivary secretion in live mice expressing GCamp6F, following stimulation of the nerves innervating the submandibular gland. Consistent with in vitro studies, Ca2+ signals were initiated in the apical endoplasmic reticulum. In marked contrast to in vitro data, highly localized trains of Ca2+ transients that failed to fully propagate from the apical region were observed. Following stimuli optimum for secretion, large apical-basal gradients were elicited. A new mathematical model, incorporating these data was constructed to probe how salivary secretion can be optimally stimulated by apical Ca2+ signals.


Asunto(s)
Señalización del Calcio/fisiología , Saliva/metabolismo , Glándulas Salivales/metabolismo , Células Acinares/metabolismo , Animales , Calcio/metabolismo , Biología Computacional , Retículo Endoplásmico/metabolismo , Femenino , Canales Iónicos/metabolismo , Masculino , Ratones , Glándulas Salivales/patología , Glándula Submandibular
13.
Vet Immunol Immunopathol ; 241: 110336, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649042

RESUMEN

Neutrophils are essential for innate immunity as the first line of defence. Neutrophils act as phagocytic white blood cells to kill bacteria and other microorganisms. A strong respiratory burst of neutrophils, dependent on reactive oxygen species, is produced during phagocytosis. Platelet-activating factor (PAF) is a signalling molecule with several prominent roles in tissue injury, inflammation, and platelet aggregation. However, the detailed mechanisms and intracellular signalling pathways involved in PAF-mediated neutrophil activation remain unclear. Here, we investigated the effect of PAF on changes in calcium concentration ([Ca2+]i) and oxygen radical (O2-) generation in activating canine neutrophils. We further evaluated these effects of PAF with inhibition of G protein-coupled receptors using the specific inhibitor suramin. Blood samples were collected from a total of five dogs and neutrophils were isolated. PAF stimulation of canine neutrophils caused an increase in [Ca2+]i as well as the generation of O2-, and the PAF receptor was sensitive to suramin. The results suggested that PAF stimulation of canine neutrophils may cause Ca2+ influx from the endoplasmic reticulum into the cytoplasm (as the first wave) and then trigger store-operated Ca2+ entry (as the second wave), which is an important intracellular signal transduction pathway for neutrophil activation. Furthermore, O2- generation by PAF stimulation may depend on the intracellular signalling pathway, with increasing inositol trisphosphate levels and [Ca2+]i via G protein-coupled receptors. The finding that PAF-activating platelet aggregation is involved in canine neutrophil activation suggests a close relationship between haemostasis and neutrophil activation in dogs, offering new insight into the response to infection.


Asunto(s)
Neutrófilos , Factor de Activación Plaquetaria , Animales , Calcio , Perros , Neutrófilos/citología , Factor de Activación Plaquetaria/farmacología , Especies Reactivas de Oxígeno , Receptores Acoplados a Proteínas G , Transducción de Señal , Suramina/farmacología
14.
BMC Genomics ; 11: 210, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20350329

RESUMEN

BACKGROUND: The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. RESULTS: To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. CONCLUSION: The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.


Asunto(s)
ADN Complementario/análisis , ADN de Plantas/análisis , Solanum lycopersicum/genética , Biblioteca de Genes , Genómica
15.
Nucleic Acids Res ; 36(Database issue): D747-52, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17932069

RESUMEN

Medaka (Oryzias latipes) is a small egg-laying freshwater teleost native to East Asia that has become an excellent model system for developmental genetics and evolutionary biology. The draft medaka genome sequence (700 Mb) was reported in June 2007, and its substantial genomic resources have been opened to the public through the University of Tokyo Genome Browser Medaka (UTGB/medaka) database. This database provides basic genomic information, such as predicted genes, expressed sequence tags (ESTs), guanine/cytosine (GC) content, repeats and comparative genomics, as well as unique data resources including (i) 2473 genetic markers and experimentally confirmed PCR primers that amplify these markers, (ii) 142,414 bacterial artificial chromosome (BAC) and 217,344 fosmid end sequences that amount to 15.0- and 11.1-fold clone coverage of the entire genome, respectively, and were used for draft genome assembly, (iii) 16,519,460 single nucleotide polymorphisms (SNPs), and 2 859 905 insertions/deletions detected between two medaka inbred strain genomes and (iv) 841 235 5'-end serial analyses of gene-expression (SAGE) tags that identified 344 266 transcription start sites on the genome. UTGB/medaka is available at: http://medaka.utgenome.org/.


Asunto(s)
Bases de Datos Genéticas , Genómica , Oryzias/genética , Animales , Cromosomas Artificiales Bacterianos , Expresión Génica , Marcadores Genéticos , Variación Genética , Internet , Plásmidos/genética , Polimorfismo de Nucleótido Simple , Sitio de Iniciación de la Transcripción , Interfaz Usuario-Computador
16.
PLoS Genet ; 3(4): e55, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17432937

RESUMEN

Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.


Asunto(s)
Metilación de ADN , Silenciador del Gen/fisiología , Impresión Genómica/fisiología , Retroelementos/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Mapeo Cromosómico , Cromosomas de los Mamíferos , Proteínas de Unión al ADN , Embrión de Mamíferos , Humanos , Macropodidae/genética , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Ornitorrinco/genética , Proteínas/genética , Proteínas de Unión al ARN
17.
Regen Ther ; 15: 121-128, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426210

RESUMEN

INTRODUCTION: Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated. METHODS: The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by in vitro assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups: control, undifferentiated, rh-bFGF, and rc-bFGF groups. After neuronal induction, the percentage of cells that had changed to a neuron-like morphology and the mRNA expression of neuronal markers were evaluated. Furthermore, to assess the function of the canine BMSCs after neuronal induction, changes in the intracellular Ca2+ concentrations after stimulation with KCl and l-glutamate were examined. RESULTS: The protein synthesized in this study was rc-bFGF and functioned as bFGF, from the results of RT-PCR, western blotting, and the expression of pERK in HEK293 cells. Canine BMSCs acquired a neuron-like morphology and expressed mRNAs of neuronal markers after neuronal induction in the rh-bFGF and the rc-bFGF groups. These results were more marked in the rc-bFGF group than in the other groups. Furthermore, an increase in intracellular Ca2+ concentrations was observed after the stimulation of KCl and l-glutamate in the rc-bFGF group, same as in the rh-bFGF group. CONCLUSIONS: A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs.

18.
PLoS One ; 14(8): e0221832, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31461497

RESUMEN

Pilocarpine is an M3 muscarinic agonist that is widely used for the treatment of xerostomia caused by various diseases and medical conditions. Pilocarpine induced the secretion of salivary fluid in perfused submandibular glands of rats. The secretion of salivary fluid observed after removal of pilocarpine was referred to as residual fluid secretion. The volume of fluid and time of the residual secretion depended on the dose of pilocarpine. Such a residual effect of pilocarpine was observed on fluid secretion via the paracellular pathway and oxygen consumption. When a muscarinic antagonist was added to the perfusate immediately after cessation of pilocarpine, residual secretion of salivary fluid did not occur. These observations indicate that the residual secretion of salivary fluid is a characteristics of the interaction of pilocarpine with muscarinic receptors.


Asunto(s)
Perfusión , Pilocarpina/farmacología , Saliva/metabolismo , Glándula Submandibular/metabolismo , Animales , Masculino , Antagonistas Muscarínicos/farmacología , Consumo de Oxígeno , Piperidinas/farmacología , Ratas Wistar , Saliva/efectos de los fármacos , Glándula Submandibular/efectos de los fármacos , Tetrodotoxina
19.
J Vet Med Sci ; 81(10): 1515-1521, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31474665

RESUMEN

In healthy individuals, plasma glucose levels are maintained within a normal range. During fasting, endogenous glucose is released either through glycogenolysis or gluconeogenesis. Gluconeogenesis involves the formation of glucose-6-phosphate from a variety of precursors followed by its subsequent hydrolysis to glucose. Gluconeogenesis occurs in the liver and the kidney. In order to compare gluconeogenesis in canine liver and kidney, the activity and expression of the rate limiting enzymes that catalyze the fructose-6-phosphate and fructose 1,6-bisphosphate steps, namely, phosphofructokinase-1 (PFK-1) (glycolysis) and fructose bisphosphatase-1 (FBP-1) (gluconeogenesis), were examined. Healthy male and female beagle dogs aged 1-2 years were euthanized humanely, and samples of their liver and kidney were obtained for analysis. The levels of PFK-1 and FBP-1 in canine liver and kidney were assessed by enzymatic assays, Western blotting, and RT-qPCR. Enzyme assays showed that, in dogs, the kidney had higher specific activity of PFK-1 and FBP-1 than the liver. Western blotting and RT-qPCR data demonstrated that of the three different subunits (PFK-M, PFK-L, and PFK-P) the PFK-1 in canine liver mainly comprised PFK-L, whereas the PFK-1 in the canine kidney comprised all three subunits. As a result of these differences in the subunit composition of PFK-1, glucose metabolism might be regulated differently in the liver and kidney.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Riñón/enzimología , Hígado/enzimología , Fosfofructoquinasa-1/metabolismo , Animales , Perros , Femenino , Fructosa-Bifosfatasa/química , Gluconeogénesis , Glucólisis , Masculino , Fosfofructoquinasa-1/química
20.
J Vet Med Sci ; 81(5): 712-716, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30918224

RESUMEN

Phosphofructokinase-1 (EC:2.7.1.11, PFK-1) catalyzes the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate using adenosine triphosphate and is a key regulatory enzyme of glycolysis. Mammalian PFK-1 isozymes are composed of three kinds of subunits (PFK-M, -L, and -P), with different properties. It has been suggested that the proportion of PFK-1 subunits in different organs is based on the organ energy metabolism. In this study, we analyzed the activity and subunit composition of canine PFK-1. We found that, in dogs, the skeletal muscle only has PFK-M, the liver mainly has PFK-L, and the brain expresses all of them. The knowledge of the composition of PFK-1 could provide useful information for determination of the differences in glycolysis in various organs of dogs.


Asunto(s)
Perros/metabolismo , Isoenzimas/metabolismo , Fosfofructoquinasa-1/metabolismo , Animales , Encéfalo/enzimología , Femenino , Hígado/enzimología , Masculino , Músculo Esquelético/enzimología , Fosfofructoquinasa-1/química , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA