Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 114(4): 934-950, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36919198

RESUMEN

Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defense against pathogens, including viruses. Previous studies indicated disruption of chloroplast homeostasis as a basic strategy of Begomovirus for its successful infection leading to the production of vein-clearing, mosaic, and chlorotic symptoms in infected plants. Although begomoviral pathogenicity determinant protein Beta C1 (ßC1) was implicated for pathogenicity, the underlying mechanism was unclear. Here we show that, begomoviral ßC1 directly interferes with the host plastid homeostasis. ßC1 induced DPD1, an organelle-specific nuclease, implicated in nutrient salvage and senescence, as well as modulated the function of a major plastid genome maintainer protein RecA1, to subvert plastid genome. We show that ßC1 was able to physically interact with bacterial RecA and its plant homolog RecA1, resulting in its altered activity. We observed that knocking-down DPD1 during virus infection significantly reduced virus-induced necrosis. These results indicate the presence of a strategy in which a viral protein alters host defense by targeting modulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.


Asunto(s)
Begomovirus , Virosis , Begomovirus/genética , Begomovirus/metabolismo , Cloroplastos/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Virosis/metabolismo , Enfermedades de las Plantas/genética , Nicotiana/genética
2.
BMC Genomics ; 23(1): 53, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031003

RESUMEN

BACKGROUND: Small non-coding (s)RNAs are involved in the negative regulation of gene expression, playing critical roles in genome integrity, development and metabolic pathways. Targeting of RNAs by ribonucleoprotein complexes of sRNAs bound to Argonaute (AGO) proteins results in cleaved RNAs having precise and predictable 5` ends. While tools to study sliced bits of RNAs to confirm the efficiency of sRNA-mediated regulation are available, they are sub-optimal. In this study, we provide an improvised version of a tool with better efficiency to accurately validate sRNA targets. RESULTS: Here, we improvised the CleaveLand tool to identify additional micro (mi)RNA targets that belong to the same family and also other targets within a specified free energy cut-off. These additional targets were otherwise excluded during the default run. We employed these tools to understand the sRNA targeting efficiency in wild and cultivated rice, sequenced degradome from two rice lines, O. nivara and O. sativa indica Pusa Basmati-1 and analyzed variations in sRNA targeting. Our results indicate the existence of multiple miRNA-mediated targeting differences between domesticated and wild species. For example, Os5NG4 was targeted only in wild rice that might be responsible for the poor secondary wall formation when compared to cultivated rice. We also identified differential mRNA targets of secondary sRNAs that were generated after miRNA-mediated cleavage of primary targets. CONCLUSIONS: We identified many differentially targeted mRNAs between wild and domesticated rice lines. In addition to providing a step-wise guide to generate and analyze degradome datasets, we showed how domestication altered sRNA-mediated cascade silencing during the evolution of indica rice.


Asunto(s)
MicroARNs , Oryza , Proteínas Argonautas/genética , Secuencia de Bases , MicroARNs/genética , Oryza/genética , Oryza/metabolismo , ARN Mensajero
3.
Planta ; 256(1): 17, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737180

RESUMEN

MAIN CONCLUSION: In-depth comparative degradome analysis of two domesticated grape cultivars with diverse secondary metabolite accumulation reveals differential miRNA-mediated targeting. Small (s)RNAs such as micro(mi)RNAs and secondary small interfering (si) often work as negative switches of gene expression. In plants, it is well known that miRNAs target and cleave mRNAs that have high sequence complementarity. However, it is not known if there are variations in miRNA-mediated targeting between subspecies and cultivars that have been subjected to vast genetic modifications through breeding and other selections. Here, we have used PAREsnip2 tool for analysis of degradome datasets derived from two contrasting domesticated grape cultivars having varied fruit color, habit and leaf shape. We identified several interesting variations in sRNA targeting using degradome and 5'RACE analysis between two contrasting grape cultivars that was further correlated using RNA-seq analysis. Several of the differences we identified are associated with secondary metabolic pathways. We propose possible means by which sRNAs might contribute to diversity in secondary metabolites and other development pathways between two domesticated cultivars of grapes.


Asunto(s)
MicroARNs , Vitis , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Fitomejoramiento , Interferencia de ARN , ARN de Planta/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ARN , Vitis/genética , Vitis/metabolismo
4.
J Exp Bot ; 73(11): 3511-3530, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35243491

RESUMEN

Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.


Asunto(s)
MicroARNs/genética , Oryza , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 48(6): 3103-3118, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32025695

RESUMEN

Micro (mi)RNAs are 20-22nt long non-coding RNA molecules involved in post-transcriptional silencing of targets having high base-pair complementarity. Plant miRNAs are processed from long Pol II-transcripts with specific stem-loop structures by Dicer-like (DCL) 1 protein. Although there were reports indicating how a specific region is selected for miRNA biogenesis, molecular details were unclear. Here, we show that the presence of specific GC-rich sequence signature within miRNA/miRNA* region is required for the precise miRNA biogenesis. The involvement of GC-rich signatures in precise processing and abundance of miRNAs was confirmed through detailed molecular and functional analysis. Consistent with the presence of the miRNA-specific GC signature, target RNAs of miRNAs also possess conserved complementary sequence signatures in their miRNA binding motifs. The selection of these GC signatures was dependent on an RNA binding protein partner of DCL1 named HYL1. Finally, we demonstrate a direct application of this discovery for enhancing the abundance and efficiency of artificial miRNAs that are popular in plant functional genomic studies.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , MicroARNs/biosíntesis , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Secuencia Conservada/genética , Secuencia Rica en GC/genética , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , ARN de Planta/genética , Motivos de Unión al ARN/genética
6.
New Phytol ; 232(4): 1674-1691, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34449900

RESUMEN

RNA-dependent RNA polymerases (RDR) generate double-stranded (ds)RNA triggers for RNA silencing across eukaryotes. Among the three clades, α-clade and ß-clade members are key components of RNA silencing and mediators of stress responses across eukaryotes. However, γ-clade members are unusual in that they are represented in phylogenetically distant plants and fungi, and their functions are unknown. Using genetic, bioinformatic and biochemical methods, we show that γ-clade RDRs from Oryza sativa L. are involved in plant development as well as regulation of expression of coding and noncoding RNAs. Overexpression of γ-clade RDRs in transgenic rice and tobacco plants resulted in robust growth phenotype, whereas their silencing in rice displayed strong inhibition of growth. Small (s)RNA and RNA-seq analysis of OsRDR3 mis-expression lines suggested that it is specifically involved in the regulation of repeat-rich regions in the genome. Biochemical analysis confirmed that OsRDR3 has robust polymerase activities on both single stranded (ss)RNA and ssDNA templates similar to the activities reported for α-clade RDRs such as AtRDR6. Our results provide the first evidence of the importance of γ-clade RDRs in plant development, their atypical biochemical activities and their contribution to the regulation of gene expression.


Asunto(s)
Oryza , Genómica , Oryza/genética , Fenotipo , Interferencia de ARN , ARN Polimerasa Dependiente del ARN/genética
7.
Access Microbiol ; 1(3): e000019, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32974515

RESUMEN

The genus Chryseobacterium was formally established in 1994 and contains 112 species with validly published names. Most of these species are yellow or orange coloured, and contain a flexirubin-type pigment. The genomes of 83 of these 112 species have been sequenced in view of their importance in clinical microbiology and potential applications in biotechnology. The National Center for Biotechnology Information taxonomy browser lists 1415 strains as members of the genus Chryseobacterium , of which the genomes of 94 strains have been sequenced. In this study, by comparing the 16S rDNA and the deduced proteome sequences, at least 20 of these strains have been proposed to represent novel species of the genus Chryseobacterium . Furthermore, a yellow-coloured bacterium isolated from dry soil in the USA (and identified as Flavobacterium sp. strain B-14859) has also been reconciled as a novel member of the genus Chryseobacterium based on the analysis of 16S rDNA sequences and the presence of flexirubin. Yet another bacterium (isolated from a water sample collected in the Western Ghats of India and identified as Chryseobacterium sp. strain WG4) was also found to represent a novel species. These proposals need to be validated using polyphasic taxonomic approaches.

8.
Microb Genom ; 4(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29620507

RESUMEN

The order Sphingomonadales is a taxon of bacteria with a variety of physiological features and carotenoid pigments. Some of the coloured strains within this order are known to be aerobic anoxygenic phototrophs that contain characteristic photosynthesis gene clusters (PGCs). Previous work has shown that majority of the ORFs putatively involved in the biosynthesis of C40 carotenoids are located outside the PGCs in these strains. The main purpose of this study was to understand the genetic basis for the various colour/carotenoid phenotypes of the strains of Sphingomonadales. Comparative analyses of the genomes of 41 strains of this order revealed that there were different patterns of clustering of carotenoid biosynthesis (crt) ORFs, with four ORF clusters being the most common. The analyses also revealed that co-occurrence of crtY and crtI is an evolutionarily conserved feature in Sphingomonadales and other carotenogenic bacteria. The comparisons facilitated the categorisation of bacteria of this order into four groups based on the presence of different crt ORFs. Yellow coloured strains most likely accumulate nostoxanthin, and contain six ORFs (group I: crtE, crtB, crtI, crtY, crtZ, crtG). Orange coloured strains may produce adonixanthin, astaxanthin, canthaxanthin and erythroxanthin, and contain seven ORFs (group II: crtE, crtB, crtI, crtY, crtZ, crtG, crtW). Red coloured strains may accumulate astaxanthin, and contain six ORFs (group III: crtE, crtB, crtI, crtY, crtZ, crtW). Non-pigmented strains may contain a smaller subset of crt ORFs, and thus fail to produce any carotenoids (group IV). The functions of many of these ORFs remain to be characterised.


Asunto(s)
Carotenoides/genética , Carotenoides/metabolismo , Fotosíntesis/genética , Sphingomonadaceae/genética , Secuencia de Aminoácidos , Cantaxantina/metabolismo , Variación Genética , Familia de Multigenes/genética , Sistemas de Lectura Abierta/genética , Sphingomonadaceae/clasificación , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA