Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047842

RESUMEN

Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.


Asunto(s)
Aequorina , Protones , Aequorina/genética , Aequorina/química , Agua , Conformación Proteica , Proteínas Luminiscentes/metabolismo , Mutagénesis , Calcio/metabolismo , Mediciones Luminiscentes
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 720-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598741

RESUMEN

Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Šresolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Calcio/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Agua/química , Catálisis , Cristalografía por Rayos X , Factores de Tiempo
3.
Chembiochem ; 14(6): 739-45, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23494831

RESUMEN

Ca(2+) -regulated photoproteins use a noncovalently bound 2-hydroperoxycoelenterazine ligand to emit light in response to Ca(2+) binding. To better understand the mechanism of formation of active photoprotein from apoprotein, coelenterazine and molecular oxygen, we investigated the spectral properties of the anaerobic apo-obelin-coelenterazine complex and the kinetics of its conversion into active photoprotein after exposure to air. Our studies suggest that coelenterazine bound within the anaerobic complex might be a mixture of N7-protonated and C2(-) anionic forms, and that oxygen shifts the equilibrium in favor of the C2(-) anion as a result of peroxy anion formation. Proton removal from N7 and further protonation of peroxy anion and the resulting formation of 2-hydroperoxycoelenterazine in obelin might occur with the assistance of His175. It is proposed that this conserved His residue might play a key role both in formation of active photoprotein and in Ca(2+) -triggering of the bioluminescence reaction.


Asunto(s)
Hidrozoos/metabolismo , Imidazoles/metabolismo , Proteínas Luminiscentes/metabolismo , Oxígeno/metabolismo , Pirazinas/metabolismo , Animales , Calcio/metabolismo , Histidina/química , Histidina/metabolismo , Hidrozoos/química , Imidazoles/química , Luminiscencia , Proteínas Luminiscentes/química , Modelos Moleculares , Unión Proteica , Protones , Pirazinas/química , Espectrofotometría
4.
Photochem Photobiol ; 98(1): 275-283, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34727376

RESUMEN

Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.


Asunto(s)
Aequorina , Hidrozoos , Aequorina/metabolismo , Animales , Calcio/metabolismo , Hidrozoos/metabolismo , Cinética , Proteínas Luminiscentes/metabolismo
5.
Sci Rep ; 12(1): 19613, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379962

RESUMEN

Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca2+-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca2+-discharged obelin-v bound with the reaction product determined at 2.1 Å resolution. Comparison of the crystal structure of Ca2+-discharged obelin-v with those of other obelins before and after bioluminescence reaction reveals no considerable changes in the overall structure. However, the drastic changes in CTZ-binding cavity are observed owing to the completely different reaction product, coelenteramine-v (CTM-v). Since CTM-v is certainly the main product of obelin-v bioluminescence and is considered to be a product of the "dark" pathway of dioxetanone intermediate decomposition, it explains the low bioluminescence activity of obelin and apparently of other photoproteins with CTZ-v.


Asunto(s)
Calcio de la Dieta , Calcio , Calcio/metabolismo , Conformación Proteica , Proteínas Luminiscentes/metabolismo , Mediciones Luminiscentes
6.
Protein Sci ; 31(2): 454-469, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34802167

RESUMEN

Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.


Asunto(s)
Calcio , Mediciones Luminiscentes , Calcio/metabolismo , Enlace de Hidrógeno , Proteínas Luminiscentes/química , Conformación Proteica
7.
J Photochem Photobiol B ; 162: 286-297, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27395792

RESUMEN

The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Eliminación de Secuencia , Tirosina , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Luminiscencia , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Conformación Proteica
8.
J Photochem Photobiol B ; 154: 57-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26690016

RESUMEN

Light-sensitive photoprotein berovin accounts for a bright bioluminescence of ctenophore Beroe abyssicola. Berovin is functionally identical to the well-studied Ca(2+)-regulated photoproteins of jellyfish, however in contrast to those it is extremely sensitive to the visible light. Berovin contains three EF-hand Ca(2+)-binding sites and consequently belongs to a large family of the EF-hand Ca(2+)-binding proteins. Here we report the spatial structure of apo-berovin with bound Mg(2+) determined at 1.75Å. The magnesium ion is found in each functional EF-hand loop of a photoprotein and coordinated by oxygen atoms donated by the side-chain groups of aspartate, carbonyl groups of the peptide backbone, or hydroxyl group of serine with characteristic oxygen-Mg(2+) distances. As oxygen supplied by the side-chain of the twelfth residue of all Ca(2+)-binding loops participates in the magnesium ion coordination, it was suggested that Ca(2+)-binding loops of berovin belong to the mixed Ca(2+)/Mg(2+) rather than Ca(2+)-specific type. In addition, we report an effect of physiological concentration of Mg(2+) on bioluminescence of berovin (sensitivity to Ca(2+), rapid-mixed kinetics, light-sensitivity, thermostability, and apo-berovin conversion into active protein). The different impact of physiological concentration of Mg(2+) on berovin bioluminescence as compared to hydromedusan photoproteins was attributed to different affinities of the Ca(2+)-binding sites of these photoproteins to Mg(2+).


Asunto(s)
Calcio/química , Luz , Proteínas Luminiscentes/metabolismo , Magnesio/metabolismo , Aequorina/química , Aequorina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Ctenóforos , Iones/química , Cinética , Mediciones Luminiscentes , Proteínas Luminiscentes/química , Magnesio/química , Simulación de Dinámica Molecular , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína
9.
FEBS J ; 281(5): 1432-1445, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24418253

RESUMEN

Ca(2+) -regulated photoproteins are responsible for the bioluminescence of a variety of marine coelenterates. All hydromedusan photoproteins are a single-chain polypeptide to which 2-hydroperoxycoelenterazine is tightly but non-covalently bound. Bioluminescence results from oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. The bioluminescence spectral maxima of recombinant photoproteins vary in the range 462-495 nm, despite a high degree of identity of amino acid sequences and spatial structures of these photoproteins. Based on studies of obelin and aequorin mutants with substitution of Phe to Tyr and Tyr to Phe, respectively [Stepanyuk GA et al. (2005) FEBS Lett 579, 1008-1014], it was suggested that the spectral differences may be accounted for by an additional hydrogen bond between the hydroxyl group of a Tyr residue and an oxygen atom of the 6-(p-hydroxyphenyl) substituent of coelenterazine. Here, we report the crystal structures of two conformation states of the F88Y obelin mutant that has bioluminescence and product fluorescence spectra resembling those of aequorin. Comparison of spatial structures of the F88Y obelin conformation states with those of wild-type obelin clearly shows that substitution of Phe to Tyr does not affect the overall structures of either F88Y obelin or its product following Ca(2+) discharge, compared to the conformation states of wild-type obelin. The hydrogen bond network in F88Y obelin being due to the Tyr substitution clearly supports the suggestion that different hydrogen bond patterns near the oxygen of the 6-(p-hydroxyphenyl) substituent are the basis for spectral modifications between hydromedusan photoproteins.


Asunto(s)
Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Sustitución de Aminoácidos , Animales , Secuencia Conservada , Cristalografía por Rayos X , Enlace de Hidrógeno , Hidrozoos/genética , Hidrozoos/metabolismo , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA