Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 108(7): 1851-1860, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779594

RESUMEN

Sialylation is the terminal addition of sialic acid to underlying glycans. It plays a prominent role in cell adhesion and immune regulation. Sialylated structures found on adhesion molecules, such as CD49d, mediate the interactions between cancer cells and the microenvironment, facilitating metastatic seeding in target organs. Chronic lymphocytic leukemia (CLL) is a clonal B-cell malignancy characterized by the accumulation of CD5-positive B cells in the peripheral blood, bone marrow and lymph nodes. CLL cells proliferate mainly in the lymph node "proliferation centers", where the microenvironment provides pro-survival signals. Thus, migration and homing into these protective niches play a crucial role in CLL biology. In recent years, therapeutic strategies aimed at inducing the egress of CLL cells from the lymph nodes and bone marrow into the circulation have been highly successful. In this study, the sialylation status of 79 untreated and 24 ibrutinib-treated CLL patients was characterized by flow cytometry. Moreover, the effect of sialic acid removal on migration was tested by a transwell assay. Finally, we examined the sialylation status of CD49d by Western blot analysis. We found that CLL cells are highly sialylated, particularly those characterized by an "activated" immune phenotype. Notably, sialylation regulates CLL migration through the post-translational modification of CD49d. Finally, we showed that therapeutic agents that induce CLL mobilization from their protective niches, such as ibrutinib, modulate sialic acid levels. We propose that sialylation is an important regulator of CLL trafficking and may represent a novel target to further improve CLL therapy.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Ácido N-Acetilneuramínico/metabolismo , Médula Ósea/patología , Linfocitos B/metabolismo , Integrina alfa4/metabolismo , Microambiente Tumoral
2.
Nitric Oxide ; 127: 44-53, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872082

RESUMEN

Prostate cancer is a leading cause of cancer death in men. Inflammation and overexpression of inducible nitric oxide synthase (NOS2) have been implicated in prostate carcinogenesis. We aimed to explore the hypothesis that nitric oxide NO exerts pro-tumorigenic effects on prostate cells at physiologically relevant levels contributing to carcinogenesis. We investigated the impact of acute exposure of normal immortalised prostate cells (RWPE-1) to NO on cell proliferation and activation of DNA damage repair pathways. Furthermore we investigated the long term effects of chronic NO exposure on RWPE-1 cell migration and invasion potential and hallmarks of transformation. Our results demonstrate that NO induces DNA damage as indicated by γH2AX foci and p53 activation resulting in a G1/S phase block and activation of 53BP1 DNA damage repair protein. Long term adaption to NO results in increased migration and invasion potential, acquisition of anchorage independent growth and increased resistance to chemotherapy. This was recapitulated in PC3 and DU145 prostate cancer cells which upon chronic exposure to NO displayed increased cell migration, colony formation and increased resistance to chemotherapeutics. These findings indicate that NO may play a key role in the development of prostate cancer and the acquisition of an aggressive metastatic phenotype.


Asunto(s)
Próstata , Neoplasias de la Próstata , Carcinogénesis , Línea Celular Tumoral , Humanos , Masculino , Óxido Nítrico/metabolismo , Fenotipo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
3.
Cancer Immunol Immunother ; 69(3): 421-434, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31919623

RESUMEN

Multiple myeloma (MM) is a clonal plasma cell malignancy typically associated with the high and uniform expression of the CD38 transmembrane glycoprotein. Daratumumab is a humanized IgG1κ CD38 monoclonal antibody (MoAb) which has demonstrated impressive single agent activity even in relapsed refractory MM patients as well as strong synergy with other anti-MM drugs. Natural Killer (NK) cells are cytotoxic immune effector cells that mediate in vivo tumour immunosurveillance. NK cells also play an important role during MoAb therapy by inducing antibody dependent cellular cytotoxicity (ADCC) via their FcγRIII (CD16) receptor. Furthermore, 15% of the population express a naturally occurring variant of CD16 harbouring a single-point polymorphism (F158V). However, the contribution of NK cells to the efficacy of daratumumab remains debatable as clinical data clearly indicate the rapid depletion of CD38high peripheral blood NK cells in patients upon daratumumab administration. In contrast, CD38low peripheral blood NK cells have been shown to survive daratumumab mediated fratricide in vivo, while still retaining their potent anti-MM cytolytic effector functions ex vivo. Therefore, we hypothesize that transiently expressing the CD16F158V receptor using a "safe" mRNA electroporation-based approach on CD38low NK cells in combination with daratumumab could represent a novel therapeutic option for treatment of MM. In the present study, we investigate a NK cell line (KHYG-1), derived from a patient with aggressive NK cell leukemia, as a platform for generating CD38low NK cells expressing CD16F158V which can be administered as an "off-the-shelf" therapy to target both CD38high and CD38low tumour clones in patients receiving daratumumab.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Células Asesinas Naturales/inmunología , Mieloma Múltiple/tratamiento farmacológico , Receptores de IgG/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Humanos , Ratones , Mieloma Múltiple/genética , Mieloma Múltiple/patología
4.
Haematologica ; 105(2): 457-467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31101754

RESUMEN

Aberrant glycosylation resulting from altered expression of sialyltransferases, such as ST3 ß-galactoside α2-3-sialyltransferase 6, plays an important role in disease progression in multiple myeloma (MM). Hypersialylation can lead to increased immune evasion, drug resistance, tumor invasiveness, and disseminated disease. In this study, we explore the in vitro and in vivo effects of global sialyltransferase inhibition on myeloma cells using the pan-sialyltransferase inhibitor 3Fax-Neu5Ac delivered as a per-acetylated methyl ester pro-drug. Specifically, we show in vivo that 3Fax-Neu5Ac improves survival by enhancing bortezomib sensitivity in an aggressive mouse model of MM. However, 3Fax-Neu5Ac treatment of MM cells in vitro did not reverse bortezomib resistance conferred by bone marrow (BM) stromal cells. Instead, 3Fax-Neu5Ac significantly reduced interactions of myeloma cells with E-selectin, MADCAM1 and VCAM1, suggesting that reduced sialylation impairs extravasation and retention of myeloma cells in the BM. Finally, we showed that 3Fax-Neu5Ac alters the post-translational modification of the α4 integrin, which may explain the reduced affinity of α4ß1/α4ß7 integrins for their counter-receptors. We propose that inhibiting sialylation may represent a valuable strategy to restrict myeloma cells from entering the protective BM microenvironment, a niche in which they are normally protected from chemotherapeutic agents such as bortezomib. Thus, our work demonstrates that targeting sialylation to increase the ratio of circulating to BM-resident MM cells represents a new avenue that could increase the efficacy of other anti-myeloma therapies and holds great promise for future clinical applications.


Asunto(s)
Mieloma Múltiple , Animales , Bortezomib , Moléculas de Adhesión Celular , Comunicación Celular , Selectina E/genética , Humanos , Ratones , Mucoproteínas , Mieloma Múltiple/tratamiento farmacológico , Sialiltransferasas/genética , Microambiente Tumoral
5.
Blood ; 124(11): 1765-76, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25061176

RESUMEN

Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The role of altered sialylation in multiple myeloma (MM) cell trafficking has not been previously investigated. In the present study we identified high expression of ß-galactoside α-2,3-sialyltransferase, ST3GAL6, in MM cell lines and patients. This gene plays a key role in selectin ligand synthesis in humans through the generation of functional sialyl Lewis X. In MRC IX patients, high expression of this gene is associated with inferior overall survival. In this study we demonstrate that knockdown of ST3GAL6 results in a significant reduction in levels of α-2,3-linked sialic acid on the surface of MM cells with an associated significant reduction in adhesion to MM bone marrow stromal cells and fibronectin along with reduced transendothelial migration in vitro. In support of our in vitro findings, we demonstrate significantly reduced homing and engraftment of ST3GAL6 knockdown MM cells to the bone marrow niche in vivo, along with decreased tumor burden and prolonged survival. This study points to the importance of altered glycosylation, particularly sialylation, in MM cell adhesion and migration.


Asunto(s)
Mieloma Múltiple/enzimología , Proteínas de Neoplasias/metabolismo , Sialiltransferasas/metabolismo , Migración Transendotelial y Transepitelial , Animales , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/patología , Adhesión Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/genética , Proteínas de Neoplasias/genética , Sialiltransferasas/genética , Células del Estroma/enzimología , Células del Estroma/patología , beta-Galactosida alfa-2,3-Sialiltransferasa
7.
Sci Rep ; 14(1): 1756, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243063

RESUMEN

Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.


Asunto(s)
Selectina E , Glicoproteínas de Membrana , Mieloma Múltiple , Selectina-P , Antígeno Sialil Lewis X , Humanos , Adhesión Celular , Selectina E/metabolismo , Ligandos , Mieloma Múltiple/metabolismo , Selectina-P/metabolismo , Glicoproteínas de Membrana/metabolismo , Línea Celular Tumoral
8.
Cancers (Basel) ; 15(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958334

RESUMEN

Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.

9.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37046814

RESUMEN

Multiple myeloma (MM) is a plasma cell disorder that develops in the bone marrow (BM) and is characterized by uncontrolled proliferation and the ability to disseminate to different sites of the skeleton. Sialofucosylated structures, particularly Sialyl Lewis a/x (SLea/x), facilitate the homing of MM cells into the BM, leading to resistance to bortezomib in vivo. Platelets have been shown to play an important role in tumor metastasis. Platelets can bind to the surface of cancer cells, forming a "cloak" that protects them from the shear stress of the bloodstream and natural killer (NK) cell-mediated cytotoxicity. In this study, we showed that the presence of SLea/x induced a strong binding of MM cells to P-selectin, leading to specific and direct interactions with platelets, which could be inhibited by a P-selectin-blocking antibody. Importantly, platelets surrounded SLea/x-enriched MM cells, protecting them from NK cell-mediated cytotoxicity. The interactions between the platelets and MM cells were also detected in BM samples obtained from MM patients. Platelet binding to SLea/x-enriched MM cells was increased in patients with symptomatic disease and at relapse. These data suggest an important role of SLea/x and platelets in MM disease progression and resistance to therapy.

10.
Blood Adv ; 6(11): 3352-3366, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35294519

RESUMEN

Abnormal glycosylation is a hallmark of cancer, and the hypersialylated tumor cell surface facilitates abnormal cell trafficking and drug resistance in several malignancies, including multiple myeloma (MM). Furthermore, hypersialylation has also been implicated in facilitating evasion of natural killer (NK) cell-mediated immunosurveillance but not in MM to date. In this study, we explore the role of hypersialylation in promoting escape from NK cells. We document strong expression of sialic acid-derived ligands for Siglec-7 (Siglec-7L) on primary MM cells and MM cell lines, highlighting the possibility of Siglec-7/Siglec-7L interactions in the tumor microenvironment. Interactomics experiments in MM cell lysates revealed PSGL-1 as the predominant Siglec-7L in MM. We show that desialylation, using both a sialidase and sialyltransferase inhibitor (SIA), strongly enhances NK cell-mediated cytotoxicity against MM cells. Furthermore, MM cell desialylation results in increased detection of CD38, a well-validated target in MM. Desialylation enhanced NK cell cytotoxicity against CD38+ MM cells after treatment with the anti-CD38 monoclonal antibody daratumumab. Additionally, we show that MM cells with low CD38 expression can be treated with all trans-retinoic acid (ATRA), SIA and daratumumab to elicit a potent NK cell cytotoxic response. Finally, we demonstrate that Siglec-7KO potentiates NK cell cytotoxicity against Siglec-7L+ MM cells. Taken together, our work shows that desialylation of MM cells is a promising novel approach to enhance NK cell efficacy against MM, which can be combined with frontline therapies to elicit a potent anti-MM response.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Células Asesinas Naturales , Mieloma Múltiple/tratamiento farmacológico , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/uso terapéutico , Microambiente Tumoral
11.
Cytometry B Clin Cytom ; 102(2): 88-106, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35005838

RESUMEN

BACKGROUND: Multiple myeloma (MM) measurable residual disease (MRD) evaluated by flow cytometry is a surrogate for progression-free and overall survival in clinical trials. However, analysis and reporting between centers lack uniformity. We designed and evaluated a consensus protocol for MM MRD analysis to reduce inter-laboratory variation in MM MRD reporting. METHODS: Seventeen participants from 13 countries performed blinded analysis of the same eight de-identified flow cytometry files from patients with/without MRD using their own method (Stage 1). A consensus gating protocol was then designed following survey and discussions, and the data re-analyzed for MRD and other bone marrow cells (Stage 2). Inter-laboratory variation using the consensus strategy was reassessed for another 10 cases and compared with earlier results (Stage 3). RESULTS: In Stage 1, participants agreed on MRD+/MRD- status 89% and 68% of the time respectively. Inter-observer variation was high for total numbers of analyzed cells, total and normal plasma cells (PCs), limit of detection, lower limit of quantification, and enumeration of cell populations that determine sample adequacy. The identification of abnormal PCs remained relatively consistent. By consensus method, average agreement on MRD- status improved to 74%. Better consistency enumerating all parameters among operators resulted in near-unanimous agreement on sample adequacy. CONCLUSION: Uniform flow cytometry data analysis substantially reduced inter-laboratory variation in reporting multiple components of the MM MRD assay. Adoption of a harmonized approach would meet an important need for conformity in reporting MM MRD for clinical trials, and wider acceptance of MM MRD as a surrogate clinical endpoint.


Asunto(s)
Mieloma Múltiple , Análisis de Datos , Citometría de Flujo/métodos , Humanos , Neoplasia Residual/diagnóstico , Células Plasmáticas
12.
J Cell Mol Med ; 15(10): 2216-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21070598

RESUMEN

Despite progress in the treatment of acute myelogenous leukaemia (AML) the outcome often remains poor. Tumour necrosis factor related apoptosis-inducing ligand (TRAIL) is a promising therapeutic agent in many different types of tumours, but AML cells are relatively insensitive to TRAIL-induced apoptosis. Here we show that TRAIL-induced apoptosis in AML cells is predominantly mediated by death receptor 4 (DR4) and not DR5. Therefore, we constructed a variant of TRAIL (rhTRAIL-C3) that is a strong inducer of DR4-mediated apoptosis. TRAIL-C3 demonstrated much stronger pro-apoptotic activity than wild-type (WT) TRAIL in a panel of AML cell lines as well as in primary AML blasts. The higher pro-apoptotic potential was further enhanced when the TRAIL mutant was used in combination with BMS-345541, a selective inhibitor of inhibitor-κB kinases. It illustrates that combination of this TRAIL variant with chemotherapeutics or other targeted agents can kill AML with high efficacy. This may represent a major advantage over the currently used therapies that have serious toxic side effects. The high efficacy of rhTRAIL-C3 containing therapies may enable the use of lower drug doses to reduce the toxic side effects and improve patient outcome. Our findings suggest that the rational design of TRAIL variants that target DR4 potentiate the death-inducing activity of TRAIL and offer a novel therapeutic strategy for the treatment of AML.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Línea Celular Tumoral , Células Epidérmicas , Femenino , Humanos , Imidazoles/farmacología , Queratinocitos/citología , Recuento de Leucocitos , Masculino , Potenciales de la Membrana , Persona de Mediana Edad , Quinoxalinas/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética
13.
Bioorg Med Chem Lett ; 21(4): 1167-70, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21273066

RESUMEN

The synthesis of a small library of resorcylic acid lactones and evaluation of their biological properties as kinase inhibitors is described. Within the series E-enones were found more active than corresponding Z-enones as inhibitors of a subset of kinases containing a conserved cysteine. Replacement of the enone moiety with a ß-haloketone group led to compounds with an interesting kinase selectivity profile and also antiproliferative activity against Jurkat cells. An E-enone derivative also showed activity against capillary tube formation based on a co-culture of primary human umbilical cord endothelial cells (HUVECs) and vascular smooth muscle cells (vSMCs).


Asunto(s)
Antineoplásicos/química , Cetonas/química , Lactonas/química , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Células Cultivadas , Humanos , Isomerismo , Lactonas/síntesis química , Lactonas/toxicidad , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Relación Estructura-Actividad
14.
Oncoimmunology ; 10(1): 1859263, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33552684

RESUMEN

Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide's immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.


Asunto(s)
Mieloma Múltiple , ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales/farmacología , Ciclofosfamida/farmacología , Humanos , Macrófagos , Mieloma Múltiple/tratamiento farmacológico , Fagocitosis , Microambiente Tumoral
15.
Biochemistry ; 48(10): 2180-91, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19236007

RESUMEN

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent and selective inducer of apoptosis in various tumor types, raising enthusiasm for TRAIL as a potential anticancer agent. TRAIL-induced apoptosis is mediated by death receptors 4 (DR4) and DR5. The design of rhTRAIL variants either with improved affinity or selectivity toward one or both death-inducing receptors is thought to enhance the therapeutical potential of TRAIL. Here we demonstrate that a single amino acid mutation at the position of glycine 131 to lysine or arginine in wild-type rhTRAIL significantly improved the affinity of rhTRAIL toward its death receptors, with the highest affinity increase observed for the DR4 receptor. These variants were able to induce higher in vitro levels of apoptosis in cancer cells responsive to only DR4 or to both death receptors and could therefore increase the potential use of rhTRAIL as an anticancer therapeutic agent.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Receptores del Factor de Necrosis Tumoral/química , Ligando Inductor de Apoptosis Relacionado con TNF/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Sustitución de Aminoácidos , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Arginina/química , Arginina/genética , Unión Competitiva , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Bases de Datos de Proteínas , Diseño de Fármacos , Ensayo de Inmunoadsorción Enzimática , Glicina/química , Glicina/genética , Humanos , Enlace de Hidrógeno , Lisina/química , Lisina/genética , Modelos Moleculares , Péptido Hidrolasas/metabolismo , Unión Proteica/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Resonancia por Plasmón de Superficie , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Termodinámica
16.
Artículo en Inglés | MEDLINE | ID: mdl-31637237

RESUMEN

Aberrant glycosylation modulates different aspects of tumor biology, and it has long been recognized as a hallmark of cancer. Among the different forms of glycosylation, sialylation, the addition of sialic acid to underlying oligosaccharides, is often dysregulated in cancer. Increased expression of sialylated glycans has been observed in many types of cancer, including multiple myeloma, and often correlates with aggressive metastatic behavior. Myeloma, a cancer of plasma cells, develops in the bone marrow, and colonizes multiple sites of the skeleton including the skull. In myeloma, the bone marrow represents an essential niche where the malignant cells are nurtured by the microenvironment and protected from chemotherapy. Here, we discuss the role of hypersialylation in the metastatic process focusing on multiple myeloma. In particular, we examine how increased sialylation modulates homing of malignant plasma cells into the bone marrow by regulating the activity of molecules important in bone marrow cellular trafficking including selectins and integrins. We also propose that inhibiting sialylation may represent a new therapeutic strategy to overcome bone marrow-mediated chemotherapy resistance and describe different targeted approaches to specifically deliver sialylation inhibitors to the bone marrow microenvironment.

17.
Br J Haematol ; 139(4): 568-77, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17922877

RESUMEN

Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, which is being developed as an anti-tumour agent due to its selective toxicity to tumour cells, induces apoptosis by binding to two membrane-bound receptors, TRAIL-R1 and TRAIL-R2. Clinical trials have been initiated with various preparations of TRAIL as well as agonistic monoclonal antibodies to TRAIL-R1 and TRAIL-R2. Previously we reported that prior treatment of primary chronic lymphocytic leukaemia (CLL) cells with histone deacetylase inhibitors was required to sensitize CLL cells to TRAIL and, using various receptor-selective TRAIL mutant ligands, we demonstrated that CLL cells signalled to apoptosis primarily through TRAIL-R1. Some, but not all, agonistic TRAIL-receptor antibodies require cross-linking in order to induce apoptosis. The present study demonstrated that CLL cells can signal to apoptosis through the TRAIL-R2 receptor, but only after cross-linking of the agonistic TRAIL-R2 antibodies, LBY135 and lexatumumab (HGS-ETR2). In contrast, signalling through TRAIL-R1 by receptor-selective ligands or certain agonistic antibodies, such as mapatumumab (HGS-ETR1), occurs in the absence of cross-linking. These results further highlight important differences in apoptotic signalling triggered through TRAIL-R1 and TRAIL-R2 in primary tumour cells. Such information is clearly important for the rational optimisation of TRAIL therapy in primary lymphoid malignancies, such as CLL.


Asunto(s)
Apoptosis/efectos de los fármacos , Efrinas/fisiología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Reactivos de Enlaces Cruzados , Interacciones Farmacológicas , Femenino , Humanos , Ácidos Hidroxámicos/farmacología , Indoles , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Panobinostat
18.
Cancer Lett ; 254(2): 236-43, 2007 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-17467166

RESUMEN

Epstein-Barr Virus (EBV) is involved in the progression of lymphomas through still unknown mechanism involving increased resistance to induced apoptosis. We show here that in a set of apoptosis-resistant EBV-converted Burkitt's lymphoma clones, 5- and 12-lipoxygenases (LOXs) are over-expressed. Further investigations on 5-LOX showed that resistance to apoptosis increases parallely with the expression of 5-lipoxygenase (5-LOX). Inhibitors of 5-LOX: (a) decrease peroxides level, indicating that this enzyme promotes the generation of oxidative stress in EBV+ cells, and (b) potently induce apoptosis in the EBV resistant cell line E2R. 5- and 15-HETE, the products of the 5 and 15-LOXs, respectively, counteract 5-LOX inhibitor induced apoptosis, indicating that products of arachidonate metabolism, rather than peroxides, trigger a signal transduction that is required for survival of the EBV-converted cells. These findings suggest that 5- and, to a lesser extent, other LOXs, that are involved in tumor progression of several cell types, may also participate in lymphomagenesis, especially that EBV-mediated.


Asunto(s)
Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Linfoma de Burkitt/enzimología , Linfoma de Burkitt/virología , Herpesvirus Humano 4/fisiología , Apoptosis , Araquidonato 12-Lipooxigenasa/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/patología , Línea Celular Tumoral , Supervivencia Celular , Progresión de la Enfermedad , Humanos , Peroxidación de Lípido , ARN Neoplásico/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Front Oncol ; 6: 93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148485

RESUMEN

Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, ß1-4-galactosyltranferases, and N-acetyl-ß-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development.

20.
PLoS One ; 9(6): e98891, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24902048

RESUMEN

DNA replication is an essential process for cell division and as such it is a process that is directly targeted by several anticancer drugs. CDC7 plays an essential role in the activation of replication origins and has recently been proposed as a novel target for drug discovery. The MCM DNA helicase complex (MCM2-7) is a key target of the CDC7 kinase, and MCM phosphorylation status at specific sites is a reliable biomarker of CDC7 cellular activity. In this work we describe a cell-based assay that utilizes the "In Cell Western Technique" (ICW) to identify compounds that affect cellular CDC7 activity. By screening a library of approved drugs and kinase inhibitors we found several compounds that can affect CDC7-dependent phosphorylation of MCM2 in HeLa cells. Among these, Mitoxantrone, a topoisomerase inhibitor, and Ryuvidine, previously described as a CDK4 inhibitor, cause a reduction in phosphorylated MCM2 levels and a sudden blockade of DNA synthesis that is accompanied by an ATM-dependent checkpoint response. This study sheds light on the previously observed cytotoxity of Ryuvidine, strongly suggesting that it is related to its effect of causing DNA damage.


Asunto(s)
Daño del ADN/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA