Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 188(11): 5604-11, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22529298

RESUMEN

TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.


Asunto(s)
Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/fisiología , Animales , Muerte Celular/genética , Muerte Celular/inmunología , Interleucina-4/deficiencia , Mastocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas/genética , Transporte de Proteínas/inmunología , Transducción de Señal/genética , Receptor Toll-Like 4/fisiología , Tularemia/inmunología , Tularemia/microbiología , Tularemia/prevención & control
2.
Elife ; 122023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719274

RESUMEN

Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for induced pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus [cj]), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate-specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Ratones , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Callithrix , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Células Germinativas/metabolismo
3.
Exp Cell Res ; 316(17): 2747-59, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20599958

RESUMEN

Impaired DSB repair has been implicated as a molecular mechanism contributing to the accelerating aging phenotype in Hutchinson-Gilford progeria syndrome (HGPS), but neither the extent nor the cause of the repair deficiency has been fully elucidated. Here we perform a quantitative analysis of the steady-state number of DSBs and the repair kinetics of ionizing radiation (IR)-induced DSBs in HGPS cells. We report an elevated steady-state number of DSBs and impaired repair of IR-induced DSBs, both of which correlated strongly with abnormal nuclear morphology. We recreated the HGPS cellular phenotype in human coronary artery endothelial cells for the first time by lentiviral transduction of GFP-progerin, which also resulted in impaired repair of IR-induced DSBs, and which correlated with abnormal nuclear morphology. Farnesyl transferase inhibitor (FTI) treatment improved the repair of IR-induced DSBs, but only in HGPS cells whose nuclear morphology was also normalized. Interestingly, FTI treatment did not result in a statistically significant reduction in the higher steady-state number of DSBs. We also report a delay in localization of phospho-NBS1 and MRE11, MRN complex repair factors necessary for homologous recombination (HR) repair, to DSBs in HGPS cells. Our results demonstrate a correlation between nuclear structural abnormalities and the DSB repair defect, suggesting a mechanistic link that may involve delayed repair factor localization to DNA damage. Further, our results show that similar to other HGPS phenotypes, FTI treatment has a beneficial effect on DSB repair.


Asunto(s)
Núcleo Celular/patología , Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Fibroblastos/patología , Progeria/patología , Estudios de Casos y Controles , Células Cultivadas , Inhibidores Enzimáticos/uso terapéutico , Fibroblastos/efectos de los fármacos , Humanos , Progeria/tratamiento farmacológico , Síndrome
4.
Stem Cell Res ; 57: 102598, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34864219

RESUMEN

Translation of stem cell therapies to the clinic will be most successful following optimization of efficacy and safety in appropriate preclinical model systems. Among available models, nonhuman primates (NHPs) provide the most accurate recapitulation of human anatomy, physiology, genetics and epigenetics. Here, we show that baboon pluripotent cells (PSCs) recapitulate key molecular features of human PSCs with greater accuracy than that found in PSCs from non-primate species such as mice. Specifically, baboon and human PSCs exhibit greater conservation of gene expression patterns, higher sequence and structural homology among pluripotency factors, more equivalent genome-wide patterns of histone and DNA methylation modifications, and similar maintenance of bivalent programming of developmental genes than that found between human and non-primate PSCs.

5.
Stem Cells ; 25(11): 2695-2704, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17641389

RESUMEN

Human embryonic stem cells (hESCs) hold great biomedical promise, but experiments comparing them produce heterogeneous results, raising concerns regarding their reliability and utility, although these variations may result from their disparate and anonymous origins. To determine whether primate ESCs have intrinsic biological limitations compared with mouse ESCs, we examined expression profiles and pluripotency of newly established nonhuman primate ESC (nhpESCs). Ten pedigreed nhpESC lines, seven full siblings (fraternal quadruplets and fraternal triplets), and nine half siblings were derived from 41 rhesus embryos; derivation success correlated with embryo quality. Each line has been growing continuously for approximately 1 year with stable diploid karyotype (except for one stable trisomy) and expresses in vitro pluripotency markers, and eight have already formed teratomas. Unlike the heterogeneous gene expression profiles found among hESCs, these nhpESCs display remarkably homogeneous profiles (>97%), with full-sibling lines nearly identical (>98.2%). Female nhpESCs express genes distinct from their brother lines; these sensitive analyses are enabled because of the very low background differences. Experimental comparisons among these primate ESCs may prove more reliable than currently available hESCs, since they are akin to inbred mouse strains in which genetic variables are also nearly eliminated. Finally, contrasting the biological similarities among these lines with the heterogeneous hESCs might suggest that additional, more uniform hESC lines are justified. Taken together, pedigreed primate ESCs display homogeneous and reliable expression profiles. These similarities to mouse ESCs suggest that heterogeneities found among hESCs likely result from their disparate origins rather than intrinsic biological limitations with primate embryonic stem cells.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/fisiología , Linaje , Animales , Células Cultivadas , Células Madre Embrionarias/metabolismo , Femenino , Macaca mulatta , Masculino
6.
PLoS One ; 13(3): e0193195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494646

RESUMEN

Induced pluripotent stem cells (iPSCs) offer the possibility of cell replacement therapies using patient-matched cells to treat otherwise intractable diseases and debilitations. To successfully realize this potential, several factors must be optimized including i) selection of the appropriate cell type and numbers to transplant, ii) determination of the means of transplantation and the location into which the transplanted cells should be delivered, and iii) demonstration of the safety and efficacy of the cell replacement protocol to mitigate each targeted disease state. A majority of diseases or debilitations likely to be targeted by cell-based therapeutic approaches represent complex conditions or physiologies manifest predominantly in primates including humans. Nonhuman primates afford the most clinically relevant model system for biomedical studies and testing of cell-based therapies. Baboons have 92% genomic similarity with humans overall and especially significant similarities in their immunogenetic system, rendering this species a particularly valuable model for testing procedures involving cell transplants into living individuals. To maximize the utility of the baboon model, standardized protocols must be developed for the derivation of induced pluripotent stem cells from living adults and the long-term maintenance of these cells in culture. Here we tested four commercially available culture systems (ReproFF, mTeSR1, E8 and Pluristem) for competence to maintain baboon iPSCs in a pluripotent state over multiple passages, and to support the derivation of new lines of baboon iPSCs. Of these four media only Pluristem was able to maintain baboon pluripotency as assessed by morphological characteristics, immunocytochemistry and RT-qPCR. Pluristem also facilitated the derivation of new lines of iPSCs from adult baboon somatic cells, which had previously not been accomplished. We derived multiple iPS cell lines from adult baboon peripheral blood mononuclear cells cultured in Pluristem. These were validated by expression of the pluripotency markers OCT4, NANOG, SOX2, SSEA4 and TRA181, as well as the ability to differentiate into tissues from all three germ layers when injected into immunocompromised mice. These findings further advance the utility of the baboon as an ideal preclinical model system for optimizing iPS cell-based, patient-specific replacement therapies in humans.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Papio anubis , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Papio anubis/metabolismo
7.
Innate Immun ; 24(3): 152-162, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29482417

RESUMEN

Macrophages are important innate immune cells that respond to microbial insults. In response to multi-bacterial infection, the macrophage activation state may change upon exposure to nascent mediators, which results in different bacterial killing mechanism(s). In this study, we utilized two respiratory bacterial pathogens, Mycobacterium bovis (Bacillus Calmette Guerin, BCG) and Francisella tularensis live vaccine strain (LVS) with different phagocyte evasion mechanisms, as model microbes to assess the influence of initial bacterial infection on the macrophage response to secondary infection. Non-activated (M0) macrophages or activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene) were first infected with BCG for 24-48 h, subsequently challenged with LVS, and the results of inhibition of LVS replication in the macrophages was assessed. BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS. BCG infection had little effect on LVS escape from phagosomes into the cytosol in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced endosomal acidification, as well as inhibiting LVS replication. Pre-infection with BCG did not induce NO production and thus did not further reduce LVS replication. This study provides a model for studies of the complexity of macrophage activation in response to multi-bacterial infection.


Asunto(s)
Infecciones Bacterianas/inmunología , Coinfección/inmunología , Macrófagos/inmunología , Fagosomas/inmunología , Animales , Polaridad Celular , Endosomas/inmunología , Humanos , Evasión Inmune , Inmunidad Innata/inmunología , Interleucina-4/biosíntesis , Ratones , Infecciones por Mycobacterium/inmunología , Mycobacterium bovis/inmunología , Óxido Nítrico/biosíntesis , Transducción de Señal/inmunología , Transfección , Tularemia/inmunología , Vacunas Vivas no Atenuadas
8.
Methods Mol Biol ; 331: 347-74, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16881526

RESUMEN

As human embryonic stem cells (hESCs) undergo differentiation, they express genes characteristic of the lineage for which they are destined. However, fully differentiated individual cell types can be characterized by the number of mitochondria they possess and the copies of the mitochondrial genome per mitochondrion. These characteristics are indicative of a specific cell's requirement for adenosine triphosphate (ATP) and therefore cellular viability and function. Consequently, failure for an ESC to possess the full complement of mitochondria and mitochondrial DNA (mtDNA) could limit its final commitment to a particular fate. We describe a series of protocols that analyze the process of cellular mitochondrial and mtDNA differentiation during hESC differentiation. In addition, mtDNA transcription and replication are key events in cellular differentiation that require interaction between the nucleus and the mitochondrion. To this extent, we describe a series of protocols that analyze the initiation of these key events as hESCs progress from their undifferentiated state to the fully committed cell. Last, we describe real-time polymerase chain reaction protocols that allow both the identification of mtDNA copy number and determine whether mtDNA copy is uniform (homoplasmy) in its transmission or heterogeneous (heteroplasmy).


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Bencimidazoles , Carbocianinas , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , División Celular , ADN Mitocondrial/aislamiento & purificación , Colorantes Fluorescentes , Dosificación de Gen , Genoma Humano , Humanos , Inmunohistoquímica , Potenciales de la Membrana , Microscopía Fluorescente , Miocitos Cardíacos/fisiología , ARN/genética , ARN/aislamiento & purificación , ARN Mitocondrial , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Análisis de Secuencia de ADN/métodos , Transcripción Genética , Transfección/métodos
9.
Stem Cell Res ; 17(2): 352-366, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27622596

RESUMEN

The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.


Asunto(s)
Enfermedad de Parkinson/terapia , Trasplante de Células Madre , Células Madre/citología , Potenciales de Acción , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Modelos Animales
10.
Stem Cells Transl Med ; 5(9): 1133-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27343168

RESUMEN

UNLABELLED: : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. SIGNIFICANCE: Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon pluripotent stem cells can be differentiated into functional neurons that mimic those in the human brain, thus laying the foundation for the utility of the baboon model for evaluating stem cell therapies.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Neuronas Dopaminérgicas/fisiología , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/fisiología , Modelos Animales , Células-Madre Neurales/fisiología , Papio , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa
11.
PLoS One ; 11(4): e0153402, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100824

RESUMEN

M-cells (microfold cells) are thought to be a primary conduit of intestinal antigen trafficking. Using an established neutralizing anti-RANKL (Receptor Activator of NF-κB Ligand) antibody treatment to transiently deplete M-cells in vivo, we sought to determine whether intestinal M-cells were required for the effective induction of protective immunity following oral vaccination with ΔiglB (a defined live attenuated Francisella novicida mutant). M-cell depleted, ΔiglB-vaccinated mice exhibited increased (but not significant) morbidity and mortality following a subsequent homotypic or heterotypic pulmonary F. tularensis challenge. No significant differences in splenic IFN-γ, IL-2, or IL-17 or serum antibody (IgG1, IgG2a, IgA) production were observed compared to non-depleted, ΔiglB-vaccinated animals suggesting complementary mechanisms for ΔiglB entry. Thus, we examined other possible routes of gastrointestinal antigen sampling following oral vaccination and found that ΔiglB co-localized to villus goblet cells and enterocytes. These results provide insight into the role of M-cells and complementary pathways in intestinal antigen trafficking that may be involved in the generation of optimal immunity following oral vaccination.


Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/inmunología , Intestinos/citología , Intestinos/inmunología , Tularemia/inmunología , Tularemia/prevención & control , Vacunas Atenuadas/inmunología , Animales , Femenino , Inmunidad , Interferón gamma/inmunología , Interleucina-17/inmunología , Interleucina-2/inmunología , Intestinos/microbiología , Ratones , Ratones Endogámicos BALB C , Bazo/inmunología , Bazo/microbiología
12.
Cloning Stem Cells ; 7(3): 141-53, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16176124

RESUMEN

Mitochondrial biogenesis and activation of both oxidative phosphorylation, as well as transcription and replication of the mitochondrial genome, are key regulatory events in cell differentiation. Mitochondrial DNA transcription and replication are highly dependent on the interaction with nuclear-encoded transcription factors translocated from the nucleus. Using a human embryonic stem cell line, HSF 6, we analyzed the proliferation of mitochondria and the expression of mtDNA-specific transcription factors in undifferentiated, migratory embryonic stem cells and spontaneously derived cardiomyocytes. Mitochondrial proliferation and mtDNA transcription are initiated in human embryonic stem cells as they undergo spontaneous differentiation in culture into beating cardiomyocytes. Undifferentiated, pluripotent human embryonic stem cells have few mitochondria, and, as they differentiate, they polarize to one extremity of the cell and then bipolarize the differentiating cell. The differentiated cell then adopts the cytoplasmic configuration of a somatic cell as evidenced in differentiating cardiomyocytes. Transcription and replication of the extranuclear mitochondrial genome is dependent on nuclear encoded factors exported to the mitochondrion. However, the differentiating cardiomyocytes have reduced or absent levels of these transcription and replication factors, namely mitochondrial transcription factors A, B1, B2, and nuclear respiratory factor 1 and polymerase gamma. Therefore, final embryonic stem cell commitment may be influenced by mitochondrial proliferation and mtDNA transcription. However, it is likely that differentiating cardiomyocytes are in mitochondrial arrest, awaiting commitment to a final cell fate.


Asunto(s)
Diferenciación Celular/fisiología , Embrión de Mamíferos/fisiología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/fisiología , Células Madre/fisiología , Factores de Transcripción/biosíntesis , Línea Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Embrión de Mamíferos/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/ultraestructura , Células Madre/ultraestructura , Factores de Transcripción/genética , Transcripción Genética/fisiología
13.
Curr Pharm Des ; 10(15): 1739-44, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15180536

RESUMEN

The spleen tyrosine kinase Syk is an enigmatic protein tyrosine kinase functional in a number of diverse cellular processes. It is best known as a non receptor protein tyrosine kinase involved in signal transduction in cells of hematopoietic origin and plays a crucial role in signaling in most of these cells. It is involved in B and T-cell function, platelet aggregation, mast cell signaling, neutrophils and macrophages. Recently it has been found in tissues outside of the hematopoietic lineage. Perhaps the most interesting non-traditional role of Syk is that of a potential tumor suppressor in breast cancer. Absence of Syk protein in primary breast tumors is correlated with poor outcomes. Syk deficient cells have increased motility which is restored to normalcy by replacement with wild-type Syk. Syk also associates with the actin and tubulin cytoskeleton and is an alpha-tubulin kinase. The central role that Syk has in a number of cellular processes makes it an ideal starting point for broad therapeutic targeting.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/uso terapéutico , Precursores Enzimáticos/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Inhibidores Enzimáticos/farmacología , Precursores Enzimáticos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Tirosina Quinasas/metabolismo , Quinasa Syk
14.
Stem Cell Res ; 12(2): 539-49, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487129

RESUMEN

The BIRC5 gene encodes the oncofetal protein SURVIVIN, as well as four additional splice variants (ΔEx3, 2B, 3B and 2α). SURVIVIN, an inhibitor of apoptosis, is also a chromosomal passenger protein (CPP). Previous results have demonstrated that SURVIVIN is expressed at high levels in embryonic stem cells and inhibition of SURVIVIN function results in apoptosis, however these studies have not investigated the other four splice variants. In this study, we demonstrate that all variants are expressed at significantly higher levels in human embryonic stem (hES) cells than in differentiated cells. We examined the subcellular localization of the three most highly expressed variants. SURVIVIN displayed canonical CPP localization in mitotic cells and cytoplasmic localization in interphase cells. In contrast, SURVIVIN-ΔEx3 and SURVIVIN-2B did not localize as a CPP; SURVIVIN-ΔEx3 was found constitutively in the nucleus while SURVIVIN-2B was distributed along the chromosomes during mitosis and also to the mitotic spindle poles. We used inducible shRNA against SURVIVIN to inhibit expression in a titratable fashion. Using this system, we reduced the mRNA levels of these three variants to approx. 40%, resulting in a concomitant reduction of OCT4 and NANOG mRNA, suggesting a role for the SURVIVIN variants in pluripotency.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Expresión Génica , Humanos , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Proteínas Inhibidoras de la Apoptosis/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Isoformas de Proteínas , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Survivin
15.
Cell Reprogram ; 15(6): 495-502, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24182315

RESUMEN

Development of effective pluripotent stem cell-based therapies will require safety and efficacy testing in a clinically relevant preclinical model such as nonhuman primates (NHPs). Baboons and macaques are equally similar to humans genetically and both have been extensively used for biomedical research. Macaques are preferred for human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) research whereas baboons are preferred for transplantation studies because of the greater similarity of their anatomy and immunogenetic system to those of humans. We generated four induced pluripotent stem cell (iPSC) lines from skin cells of the olive baboon (Papio anubis). Each line shows the distinct morphology of primate pluripotent stem cells, including flat colonies with well-defined borders and a high nuclear/cytoplasm ratio. Each is positive for the pluripotency markers OCT4, SOX2, NANOG, and SSEA4. Pluripotency was confirmed in two lines by teratoma formation with representative tissues from each germ layer, whereas a third produced cells from all three germ layers following embryoid body differentiation. Three lines have a normal male karyotype and the fourth is missing the short arm of one copy of chromosome 18. This may serve as an in vitro model for the human developmental disorder 18p-, which impacts 1 in 50,000 births/year. These iPSC lines represent the first step toward establishing the baboon as a NHP model for developing stem cell-based therapies.


Asunto(s)
Modelos Animales , Trasplante de Células Madre , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Cartilla de ADN , Células Madre Pluripotentes Inducidas , Cariotipificación , Papio , Reacción en Cadena de la Polimerasa
16.
Tissue Eng Part A ; 19(3-4): 467-74, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23083071

RESUMEN

The present study addressed adult human mesenchymal stem cell (MSC) differentiation toward the osteoblastic lineage in response to alternating electric current, a biophysical stimulus. For this purpose, MSCs (chosen because of their proven capability for osteodifferentiation in the presence of select bone morphogenetic proteins) were dispersed and cultured within electric-conducting type I collagen hydrogels, in the absence of supplemented exogenous dexamethasone and/or growth factors, and were exposed to either 10 or 40 µA alternating electric current for 6 h per day. Under these conditions, MSCs expressed both early- (such as Runx-2 and osterix) and late- (specifically, osteopontin and osteocalcin) osteogenic genes as a function of level, and duration of exposure to alternating electric current. Compared to results obtained after 7 days, gene expression of osteopontin and osteocalcin (late-osteogenic genes) increased at day 14. In contrast, expression of these osteogenic markers from MSCs cultured under similar conditions and time periods, but not exposed to alternating electric current, did not increase as a function of time. Most importantly, expression of genes pertinent to the either adipogenic (specifically, Fatty Acid Binding Protein-4) or chondrogenic (specifically, type II collagen) pathways was not detected when MSCs were exposed to the aforementioned alternating electric-current conditions tested in the present study. The present research study was the first to provide evidence that alternating electric current promoted the differentiation of adult human MSCs toward the osteogenic pathway. Such an approach has the yet untapped potential to provide critically needed differentiated cell supplies for cell-based assays and/or therapies for various biomedical applications.


Asunto(s)
Estimulación Eléctrica/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis/fisiología , Osteogénesis/efectos de la radiación , Ingeniería de Tejidos/métodos , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Campos Electromagnéticos , Humanos , Células Madre Mesenquimatosas/efectos de la radiación , Osteoblastos/efectos de la radiación , Dosis de Radiación
17.
Stem Cell Res ; 4(1): 25-37, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19854689

RESUMEN

While human embryonic stem cells (hESCs) are predisposed toward chromosomal aneploidities on 12, 17, 20, and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes overexpressed in pluripotent rhesus ESCs (nhpESCs) and comparing them both to their genetically identical differentiated progeny (teratoma fibroblasts) and to genetically related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those overexpressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20, and X, homologues of human chromosomes 17, 19, 16, and X, respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over- and underexpressed pluripotency modulators, some implicated in neurogenesis, have been identified. The overexpression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.


Asunto(s)
Cromosomas Humanos , Células Madre Embrionarias/metabolismo , Expresión Génica , Macaca mulatta/genética , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 19 , Cromosomas Humanos X , Células Madre Embrionarias/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Células Madre Pluripotentes/citología , Teratoma/genética , Teratoma/patología
19.
Cloning Stem Cells ; 11(2): 245-57, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19508115

RESUMEN

Stable and full differentiation of pluripotent stem cells into functional beta-cells offers the potential to treat type I diabetes with a theoretically inexhaustible source of replacement cells. In addition to the difficulties in directed differentiation, progress toward an optimized and reliable protocol has been hampered by the complication that cultured cells will concentrate insulin from the media, thus making it difficult to tell which, if any, cells are producing insulin. To address this, we utilized a novel murine embryonic stem cell (mESC) research model, in which the green fluorescent protein (GFP) has been inserted within the C-peptide of the mouse insulinII gene (InsulinII-GFP). Using this method, cells producing insulin are easily identified. We then compared four published protocols for differentiating mESCs into beta-cells to evaluate their relative efficiency by assaying intrinsic insulin production. Cells differentiated using each protocol were easily distinguished based on culture conditions and morphology. This comparison is strengthened because all testing is performed within the same laboratory by the same researchers, thereby removing interlaboratory variability in culture, cells, or analysis. Differentiated cells were analyzed and sorted based on GFP fluorescence as compared to wild type cells. Each differentiation protocol increased GFP fluorescence but only modestly. None of these protocols yielded more than 3% of cells capable of insulin biosynthesis indicating the relative inefficiency of all analyzed protocols. Therefore, improved beta-cells differentiation protocols are needed, and these insulin II GFP cells may prove to be an important tool to accelerate this process.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Línea Celular , Células Madre Embrionarias/citología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Insulina/genética , Células Secretoras de Insulina/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Recombinantes de Fusión/genética , Distribución Tisular
20.
Stem Cell Res ; 2(3): 178-87, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19393591

RESUMEN

Here we have developed protocols using the baboon as a complementary alternative Old World Primate to rhesus and other macaques which have severe limitations in their availability. Baboons are not limited as research resources, they are evolutionarily closer to humans, and the multiple generations of pedigreed colonies which display complex human disease phenotypes all support their further optimization as an invaluable primate model. Since neither baboon-assisted reproductive technologies nor baboon embryonic stem cells (ESCs) have been reported, here we describe the first derivations and characterization of baboon ESC lines from IVF-generated blastocysts. Two ESCs lines (BabESC-4 and BabESC-15) display ESC morphology, express pluripotency markers (Oct-4, hTert, Nanog, Sox-2, Rex-1, TRA1-60, TRA1-81), and maintain stable euploid female karyotypes with parentage confirmed independently. They have been grown continuously for >430 and 290 days, respectively. Teratomas from both lines have all three germ layers. Availabilities of these BabESCs represent another important resource for stem cell biologists.


Asunto(s)
Línea Celular , Células Madre Embrionarias/citología , Modelos Biológicos , Animales , Biomarcadores/metabolismo , Blastómeros/citología , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Cariotipificación , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Papio , Primates , Medicina Regenerativa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA