Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Immunol ; 208(10): 2363-2375, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35477686

RESUMEN

CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.


Asunto(s)
Dióxido de Carbono , Anhidrasa Carbónica II , Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hipercapnia/enzimología , Hipercapnia/metabolismo , Isoenzimas
2.
J Chem Phys ; 160(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38174796

RESUMEN

The significance of interfacial thermal resistance in the thermal conductivity of nanofluids is not well understood, in part because of the absence of measurements of this quantity. Here, we study the interfacial thermal resistance for metal-oil nanofluids of interest as heat transfer fluids for concentrating solar power, using density functional theory and molecular dynamics simulations. Insights on the role of chemical interactions in determining the interfacial thermal resistance are revealed. The results presented here showcase a general picture in which the stronger the chemical interactions between species at the interface, the lower the associated interfacial thermal resistance. The implications toward nanofluid design are discussed. We show that, for this important family of metal-oil nanofluids, the interfacial thermal resistance values are low enough so that it is possible to afford a reduction in particle size, minimizing stability and rheological issues while still offering enhancement in the effective thermal conductivity with respect to the base fluid.

3.
J Chem Inf Model ; 62(24): 6423-6435, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35576452

RESUMEN

Many key features in photovoltaic perovskites occur in relatively long time scales and involve mixed compositions. This requires realistic but also numerically simple models. In this work we present a transferable classical force field to describe the mixed hybrid perovskite MAxFA1-xPb(BryI1-y)3 for variable composition (∀x, y ∈ [0, 1]). The model includes Lennard-Jones and Buckingham potentials to describe the interactions between the atoms of the inorganic lattice and the organic molecule, and the AMBER model to describe intramolecular atomic interactions. Most of the parameters of the force field have been obtained by means of a genetic algorithm previously developed to parametrize the CsPb(BrxI1-x)3 perovskite (Balestra et al. J. Mater. Chem. A. 2020, DOI: 10.1039/d0ta03200j). The algorithm finds the best parameter set that simultaneously fits the DFT energies obtained for several crystalline structures with moderate degrees of distortion with respect to the equilibrium configuration. The resulting model reproduces correctly the XRD patterns, the expansion of the lattice upon I/Br substitution, and the thermal expansion coefficients. We use the model to run classical molecular dynamics simulations with up to 8600 atoms and simulation times of up to 40 ns. From the simulations we have extracted the ion diffusion coefficient of the pure and mixed perovskites, presenting for the first time these values obtained by a fully dynamical method using a transferable model fitted to first-principles calculations. The values here reported can be considered as the theoretical upper limit, that is, without grain boundaries or other defects, for ion migration dynamics induced by halide vacancies in photovoltaic perovskite devices under operational conditions.

4.
Plant J ; 99(6): 1203-1219, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31111599

RESUMEN

Root development and its response to environmental changes is crucial for whole plant adaptation. These responses include changes in transcript levels. Here, we show that the alternative polyadenylation (APA) of mRNA is important for root development and responses. Mutations in FIP1, a component of polyadenylation machinery, affects plant development, cell division and elongation, and response to different abiotic stresses. Salt treatment increases the amount of poly(A) site usage within the coding region and 5' untranslated regions (5'-UTRs), and the lack of FIP1 activity reduces the poly(A) site usage within these non-canonical sites. Gene ontology analyses of transcripts displaying APA in response to salt show an enrichment in ABA signaling, and in the response to stresses such as salt or cadmium (Cd), among others. Root growth assays show that fip1-2 is more tolerant to salt but is hypersensitive to ABA or Cd. Our data indicate that FIP1-mediated alternative polyadenylation is important for plant development and stress responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Poliadenilación/genética , Estrés Salino/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 5' , Ácido Abscísico/metabolismo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cadmio/toxicidad , División Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Poliadenilación/efectos de los fármacos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
5.
Chem Rev ; 118(4): 1410-1459, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29319294

RESUMEN

The borrowing hydrogen (BH) principle, also called hydrogen auto-transfer, is a powerful approach which combines transfer hydrogenation (avoiding the direct use of molecular hydrogen) with one or more intermediate reactions to synthesize more complex molecules without the need for tedious separation or isolation processes. The strategy which usually relies on three steps, (i) dehydrogenation, (ii) intermediate reaction, and (iii) hydrogenation, is an excellent and well-recognized process from the synthetic, economic, and environmental point of view. In this context, the objective of the present review is to give a global overview on the topic starting from those contributions published prior to the emergence of the BH concept to the most recent and current research under the term of BH catalysis. Two main subareas of the topic (homogeneous and heterogeneous catalysis) have been identified, from which three subheadings based on the source of the electrophile (alkanes, alcohols, and amines) have been considered. Then the type of bond being formed (carbon-carbon and carbon heteroatom) has been taken into account to end-up with the intermediate reaction working in tandem with the metal-catalyzed hydrogenation/dehydrogenation step. The review has been completed with the more recent advances in asymmetric catalysis using the BH strategy.

6.
New Phytol ; 224(1): 242-257, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31230346

RESUMEN

Phosphate (Pi) is an essential nutrient for all organisms. Roots are underground organs, but the majority of the root biology studies have been done on root systems growing in the presence of light. Root illumination alters the Pi starvation response (PSR) at different intensities. Thus, we have analyzed morphological, transcriptional and physiological responses to Pi starvation in dark-grown roots. We have identified new genes and pathways regulated by Pi starvation that were not described previously. We also show that Pi-starved plants increase the cis-zeatin (cZ) : trans-zeatin (tZ) ratio. Transcriptomic analyses show that tZ preferentially represses cell cycle and PSR genes, whereas cZ induces genes involved in cell and root hair elongation and differentiation. In fact, cZ-treated seedlings show longer root system as well as longer root hairs compared with tZ-treated seedlings, increasing the total absorbing surface. Mutants with low cZ concentrations do not allocate free Pi in roots during Pi starvation. We propose that Pi-starved plants increase the cZ : tZ ratio to maintain basal cytokinin responses and allocate Pi in the root system to sustain its growth. Therefore, cZ acts as a PSR hormone that stimulates root and root hair elongation to enlarge the root absorbing surface and to increase Pi concentrations in roots.


Asunto(s)
Fosfatos/deficiencia , Raíces de Plantas/metabolismo , Zeatina/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación , Zeatina/farmacología
7.
Plant Cell ; 28(6): 1372-87, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26628743

RESUMEN

Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Flavonoles/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Luz , Fototropismo/genética , Fototropismo/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación
8.
Phys Chem Chem Phys ; 20(4): 2421-2430, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29308800

RESUMEN

A molecular dynamics study based on gold nanofluids performed with and without the presence of tetraoctylammonium halide as a surfactant in a base fluid is presented. The base fluid consisting of a mixture of biphenyl and diphenyl oxide is used in concentrating solar power (CSP) plants. The radial distribution functions (RDFs) and spatial distribution functions (SDFs) were analysed with the temperature. Theoretical results indicate that the surfactant acts as a kind of net around the nanoparticle that plays an active role in enhancing the thermal properties of the gold nanofluid system. A greater lability of the base fluid-surfactant interactions than the base fluid-gold nanoparticle interactions is observed. At lower temperatures, there is an inner layer around the gold nanoparticle with two surfactant molecules close to the metal. At a higher temperature a ratio of gold nanoparticles : diphenyl oxide molecules of 1 : 4 is maintained in the inner layer for the systems with and without the presence of a surfactant. At the highest temperatures, the presence of the surfactant in a second shell impedes the approximation of the fifth diphenyl oxide molecule. Thus, the surfactant affects the macroscopic properties of the gold nanofluid system at the molecular level.

9.
Chemphyschem ; 18(4): 346-356, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-27958673

RESUMEN

This study shows an analysis of the stability of nanofluids based on a eutectic mixture of diphenyl oxide and biphenyl, which is used as a heat transfer fluid (HTF) in concentrating solar energy, and NiO nanoparticles. Two surfactants are used to analyse the stability of the nanofluids: benzalkonium chloride (BAC) and 1-octadecanethiol (ODT). From an experimental perspective, the stability is analysed by means of UV/Vis spectroscopy, particle size measurements through the dynamic light-scattering technique, and ζ-potential measurements. The results show that the stability of the nanofluids improves with the use of BAC. DFT calculations are performed to understand the role played by the surfactants. The interaction of the surfactants with both the fluid and the NiO (100) surface is studied. Quantum theory of atoms in molecules (QTAIM) analysis shows that hydrogen bridge interactions favour the stability of the fluid-surfactant mixture. The more stabilising NiO-surfactant interaction involves the Ni-H interaction of the -SH and -CH3 groups of ODT and BAC. Also, nanofluids with BAC are favoured over those with ODT, which is in agreement with experimental results. The structural and electronic effects of incorporating the surfactant onto the NiO (100) surface are shown by using electron localisation function analysis, the non-covalent interaction index and projected density of states.

10.
Water Sci Technol ; 2017(1): 184-193, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29698233

RESUMEN

Photodegradation processes are of great interest in a range of applications, one of which is the photodecomposition of pollutants. For this reason, analysing nanoparticles that improve the efficiency of these processes under solar radiation are very necessary. Thus, in this study, TiO2 was doped with Mo and Cu using low-temperature hydrolysis as the method of synthesis. Pure TiO2 and x%MoS2/Cu/TiO2 nanoparticles were prepared, where x is the theoretical quantity of MoS2 added (0.0%, 1.0%, 5.5%, 10.0%), setting the nominal quantity of Cu at 0.5 wt.%. The samples obtained were characterized by X-ray diffraction, Raman spectroscopy, X-ray electron spectroscopy and UV-Vis spectroscopy in diffuse reflectance mode. The results suggest that the TiO2 structure was doped with the Mo6+ and Cu2+ ions in the position of the Ti4+. The x%MoS2/Cu/TiO2 samples presented lower band gap energy values and greater optical absorption in the visible region than the pure TiO2 sample. Lastly, the photocatalytic activity of the samples was assessed by means of the photodegradation of methylene blue under visible light. The results show that when the quantity of Mo in the co-doped samples increased (x%MoS2/Cu/TiO2) there were significant increases of up to 93% in the photocatalytic activity.


Asunto(s)
Cobre/química , Disulfuros/química , Luz , Nanopartículas del Metal/química , Azul de Metileno/química , Molibdeno/química , Titanio/química , Catálisis , Fotólisis , Agua/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Difracción de Rayos X
11.
Plant J ; 84(1): 244-55, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26312572

RESUMEN

In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.


Asunto(s)
Oscuridad , Luz , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación
13.
Chemphyschem ; 16(18): 3949-58, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26530786

RESUMEN

In this study a classic Raman spectroscopy method is applied and the intensity ratio of Stokes and anti-Stokes peaks is used to measure the temperature of thermostatically controlled TiO2 thin films. In addition, three mathematical formulae are used and analyzed to estimate the temperature of the TiO2 thin films. Overheating of the samples above the thermostatically controlled temperature was observed while recording the Raman spectra, with a temperature increase of up to 30 K being detected. DFT-periodic calculations showed that the anatase (101) surface had a smaller band gap than bulk anatase. Thus, it can absorb the laser radiation with a wavelength of 532 nm that is used in the experimental setup. Part of the absorbed photon energy transfers into phonon energy, heating up the anatase phase, thus leading to the heating of the samples. Moreover, overheating of the samples indicates that the experimental method used in this study can lead to deviations in their real absolute temperature values.

14.
Phys Chem Chem Phys ; 17(37): 23886-96, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26308377

RESUMEN

This paper presents the synthesis of organic-inorganic hybrid perovskite CH3NH3Pb1-xCdxI3. The effect of incorporating Cd(2+) or Pb(2+) on the stability of the perovskite structure was analysed from a theoretical and experimental viewpoint. The XRD results showed that the tetragonal perovskite structure was formed for x values of up to 0.5, which seems to indicate that the presence of a considerable amount of Pb(2+) is necessary to stabilise the structure. In turn, UV-Vis spectroscopy showed how the presence of Cd(2+) led to a reduction in the optical band gap of the perovskite structure of up to 9% for CH3NH3Pb0.5Cd0.5I3 with regard to the MAPbI3 structure. Moreover, periodic-DFT calculations were performed to understand the effect of the increased concentration of Cd on the structural and electronic properties of MAPbI3 perovskites. The analysis of both the ELF and the non-covalent interaction (NCI) index show the important role played by the Pb(2+) ions in stabilizing this kind of hybrid perovskite structures. Finally, the DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy. The theoretical band gap values decreased as the concentration of Cd increased.

15.
Chemphyschem ; 15(11): 2267-80, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24840394

RESUMEN

This study presents the experimental and theoretical study of highly internally Al-doped TiO2 nanoparticles. Two synthesis methods were used and detailed characterization was performed. There were differences in the doping and the crystallinity, but the nanoparticles synthesized with the different methods share common features. Anatase to rutile transformation occurred at higher temperatures with Al doping. X-ray photoelectron spectroscopy showed the generation of oxygen vacancies, which is an interesting feature in photocatalysis. In turn, the band-gap energy and the valence band did not change appreciably. Periodic density functional calculations were performed to model the experimentally doped structures, the formation of the oxygen vacancies, and the band gap. Calculation of the density of states confirmed the experimental band-gap energies. The theoretical results confirmed the presence of Ti(4+) and Al(3+) . The charge density study and electron localization function analysis indicated that the inclusion of Al in the anatase structure resulted in a strengthening of the TiO bonds around the vacancy.

16.
Phys Chem Chem Phys ; 16(8): 3835-45, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24434807

RESUMEN

A good correlation was obtained between the electronic properties of Cu-doped anatase TiO2 by virtue of both physical chemistry characterization and theoretical calculations. Pure and Cu-doped TiO2 were synthesized. The composition, structural and electronic properties, and the band gap energy were obtained using several techniques. The method of synthesis used produces Cu-doped anatase TiO2, and XRD, XPS and Raman spectroscopy indicate that Cu atoms are incorporated in the structure by substitution of Ti atoms, generating a distortion of the structure and oxygen vacancies. In turn, the band gap energy of the synthesized samples decrease drastically with the Cu doping. Moreover, periodic density functional theory (DFT-periodic) calculations were carried out both to model the experimentally observed doped structures and to understand theoretically the experimental structures obtained, the formation of oxygen vacancies and the values of the band gap energy. From the analysis of density of states (DOS), projected density of states (PDOS) and the electron localization function (ELF) a decrease in the band gap is predicted upon increasing the Cu doping. Thus, the inclusion of Cu in the anatase structure implies a covalent character in the Cu-O interaction, which involves the appearance of new states in the valence band maximum with a narrowing in the band gap.

17.
Nanoscale ; 16(17): 8470-8478, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38590267

RESUMEN

Transition metal dichalcogenides, including WSe2, have gained significant attention as promising nanomaterials for various applications due to their unique properties. In this study, we explore the temperature-dependent photoluminescent properties of WSe2 nanomaterials to investigate their potential as luminescent nanothermometers. We compare the performance of WSe2 quantum dots and nanorods synthesized using sonication synthesis and hot injection methods. Our results show a distinct temperature dependence of the photoluminescence, and conventional ratiometric luminescence thermometry demonstrates comparable relative thermal sensitivity (0.68-0.80% K-1) and temperature uncertainty (1.3-1.5 K), irrespective of the morphology of the nanomaterials. By applying multiple linear regression to WSe2 quantum dots, we achieve enhanced thermal sensitivity (30% K-1) and reduced temperature uncertainty (0.1 K), highlighting the potential of WSe2 as a versatile nanothermometer for microfluidics, nanofluidics, and biomedical assays.

18.
Chemistry ; 19(51): 17464-71, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24259460

RESUMEN

Palladium on magnesium oxide is able to allow a one-pot reaction to synthesize thioethers from thiols and aldehydes formed in situ from the respective alcohol by means of a borrowing hydrogen method. The reaction is initiated by dehydrogenation of the alcohol to give a palladium hydride intermediate and an aldehyde. The latter reacts with a thiol involving most probably the intermediacy of a thionium ion RCH=S(+)R, which can be reduced in situ by the metal hydride to afford thioethers.


Asunto(s)
Hidrógeno/química , Paladio/química , Catálisis , Cinética , Óxido de Magnesio/química , Nanopartículas del Metal/química , Sulfuros/síntesis química , Sulfuros/química
19.
Heliyon ; 9(6): e16775, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292308

RESUMEN

Perovskite-type materials have attracted great attention in recent times due to their interesting characteristics, such as their luminescent properties. The good photoluminescence quantum yields as well as the possibility of tuning the emission wavelength has allowed the study of these materials in several applications, such as sensors or LEDs. As sensors, making nanocrystals of these perovskites emitting in the near infrared (NIR) would open the possibility of using these materials in biomedical applications. In the present work, Pd-doped CsPbBr3 perovskite nanocrystals (NCs) were synthesized and characterized. We show here Pd-doped NCs synthesized emit in NIR, at about 875 nm, using a laser emitting at 785 nm as the excitation source. This result is really new and promising, because it opens the possibility of using these nanocrystals in many applications as sensor in the field of nanobiomedicine in the future.

20.
Chem Sci ; 14(26): 7114-7125, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37416716

RESUMEN

The structure and chemistry of metal-organic frameworks or MOFs dictate their properties and functionalities. However, their architecture and form are essential for facilitating the transport of molecules, the flow of electrons, the conduction of heat, the transmission of light, and the propagation of force, which are vital in many applications. This work explores the transformation of inorganic gels into MOFs as a general strategy to construct complex porous MOF architectures at nano, micro, and millimeter length scales. MOFs can be induced to form along three different pathways governed by gel dissolution, MOF nucleation, and crystallization kinetics. Slow gel dissolution, rapid nucleation, and moderate crystal growth result in a pseudomorphic transformation (pathway 1) that preserves the original network structure and pores, while a comparably faster crystallization displays significant localized structural changes but still preserves network interconnectivity (pathway 2). MOF exfoliates from the gel surface during rapid dissolution, thus inducing nucleation in the pore liquid leading to a dense assembly of percolated MOF particles (pathway 3). Thus, the prepared MOF 3D objects and architectures can be fabricated with superb mechanical strength (>98.7 MPa), excellent permeability (>3.4 × 10-10 m2), and large surface area (1100 m2 g-1) and mesopore volumes (1.1 cm3 g-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA