Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 2): 016401, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17677573

RESUMEN

Very efficient generation of monoenergetic, about 1MeV , electrons from underdense plasma with its electron density close to the critical, when irradiated by an intense femtosecond laser pulse, is found via two dimensional particle-in-cell simulation. The stimulated Raman scattering of a laser pulse with frequency omega< or =2omega(pl max) gives rise to a giant electromagnetic vortex. In contrast to electron acceleration by the well-known laser pulse wake, injected plasma electrons are accelerated up to vortex ponderomotive potential forming a quite monoenergetic distribution. A relatively high charge of such an electron source makes very efficient generation of soft gamma rays with homega>300 keV .

2.
Rev Sci Instrum ; 78(3): 036102, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17411227

RESUMEN

For multiple laser pulse experiments, it is necessary to split a laser pulse. In order to split a short laser pulse without stretching the pulse width, the laser pulse should not pass through thick materials. For this reason, a pellicle beam splitter (BS) and/or a mirror with a hole are required as a BS for the short laser pulse. The focusing qualities of the laser pulse after passing through the pellicle BS and the mirror with a hole are the same as without the BS's. The laser pulse quality reflected by the BSs should be considered for the laser pulse. A pellicle BS is a thin foil, so, it is weak against vibrations. One should be careful about airflows and isolation from vibration sources. The spot size of the reflected laser pulse is consistent with the size reflected by a normal mirror. The energy loss is about 10% compared with a normal mirror. A mirror with a hole is strong against external vibrations. The reflected laser pulse has a doughnut shape. The reflected laser pulse is interfered due to the shape. In order to cleanly focus the laser pulse, the inside size of the doughnut should be smaller than a half size of the outside portion of the doughnut.

3.
Rev Sci Instrum ; 82(3): 033301, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21456726

RESUMEN

We evaluate the simplified method using the Lambert-Beer law to measure the temperature of bremsstrahlung photon generated by an ultraintense laser. Analytical values are compared to the results of the Monte Carlo calculation of GEANT4 and they agreed very well on the condition of the appropriate distance between the attenuator and the detector. We performed the experiment to measure the temperature of bremsstrahlung x-ray emitted from a metal target irradiated by a Ti:sapphire laser with 76 mJ, 72 fs, 2.2 × 10(18) W∕cm(2). For a Cu target of 30 µm thick, the photon temperature was reasonably determined to be 0.18 MeV, which is in good agreement with previous studies.

4.
Opt Lett ; 31(23): 3456-8, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17099748

RESUMEN

We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses.

5.
Appl Opt ; 41(18): 3659-64, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12078693

RESUMEN

A sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide in the lower troposphere was developed. The system uses a combination of a pair of KD*P crystals and a tunable dye laser with LDS 765 dye pumped by the second harmonic of a Nd:YAG laser to generate lambdaon and lambdaoff alternatively. Compared with the conventional system that uses Coumarin 445 dye pumped by the third harmonic, the output energy and long-term stability were improved. By use of this system, atmospheric NO2 concentrations of approximately 10-50 ppb were measured, with an instrumental error of approximately 7 ppb.

6.
Appl Opt ; 43(35): 6487-91, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15617287

RESUMEN

A differential-absorption lidar system that uses a long-life transmitter for monitoring of atomic-mercury concentrations in the atmosphere has been developed. The third harmonic of a tunable dye laser with LDS 765 dye pumped by the second harmonic of a Nd:YAG laser was used as the emitted beam from the transmitter. By use of this system, atmospheric concentrations of atomic mercury of less than 0.4 part in 10(12) were measured. The time trend of the measured concentration agreed with that obtained by a conventional gold amalgamation method combined with atomic absorption spectroscopy on the ground.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA