Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 55(25): 7138-41, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27607293

RESUMEN

Lenses with high numerical aperture are required for images with very high spatial resolution, which is difficult to realize in the x-ray range because of low-refraction-index decrement and relatively high absorption of x-rays in the material. However, such an aperture can be realized by means of a mosaic lens, as shown in this work.

2.
J Synchrotron Radiat ; 20(Pt 4): 591-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23765301

RESUMEN

One-dimensional kinoform and prism refractive lenses with large aperture and high transmittance at 22 keV have been investigated. A 12.0 µm focus size (full width at half-maximum) and an effective aperture of 0.85 mm, at a focal length of 705 mm and 21.747 keV, were achieved.

3.
J Synchrotron Radiat ; 19(Pt 2): 191-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22338678

RESUMEN

Focusing planar refractive mosaic lenses based on triangular prism microstructures have been used as an alternative approach for wide-bandpass monochromatization of high-energy X-rays. The strong energy dependence of the refractive index of the lens material leads to an analogous energy dependence of the focal length of the lens. The refractive mosaic lens, in comparison with the refractive lens of continuous parabolic profile, is characterized by a higher aperture because of reduced passive material. In combination with a well defined pinhole aperture in the focal plane, the transmittance of photons of an appropriate energy can be relatively high and photons of deviating energy can be efficiently suppressed. The photon energy can be tuned by translating the pinhole along the optical axis, and the bandwidth changed by selecting appropriate pinhole aperture and beam stop. This method of monochromatization was realised at the ANKA FLUO beamline using a mosaic lens together with a 20 µm pinhole and beam stop. An energy resolution of 2.0% at 16 keV has been achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA