Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38744292

RESUMEN

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Asunto(s)
Acetilcolina , Mucosa Intestinal , Animales , Acetilcolina/metabolismo , Ratones , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Colina O-Acetiltransferasa/metabolismo , Interleucina-13/metabolismo , Interleucina-13/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Helmintiasis/inmunología , Helmintiasis/parasitología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inmunidad Innata , Nematospiroides dubius/inmunología , Células en Penacho
2.
FASEB J ; 33(1): 770-781, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067379

RESUMEN

Early-life adversity is a major risk factor for the development of diseases later in life. Maternal protein restriction (MPR) is associated with morbidities in offspring affecting multiple organs, but its impact on the gastrointestinal (GI) tract remains poorly studied. Using a rat model, we examined the consequences of MPR on GI function and on the enteric nervous system (ENS) in the offspring at postnatal d 35 under basal state and following a water avoidance stress (WAS). Compared with control rats, MPR rats exhibited greater colonic motility, permeability, and corticosteronemia. In contrast to controls, MPR rats presented a blunted functional and corticosteronemic response to WAS. Furthermore, MPR rats showed an increased proportion of choline acetyltransferase-immunoreactive (ChAT-IR) neurons and a reduced level of autophagy in colonic myenteric neurons. In ENS cultures, corticosterone treatment increased the proportion of ChAT-IR neurons and reduced autophagy level in enteric neurons. Inhibition of autophagy in ENS cultures resulted in a higher vulnerability of enteric neurons to a cellular stress. Altogether, this study suggests that MPR induced GI dysfunction and ENS alterations in offspring rats and that MPR-induced increased corticosteronemia might be involved in ENS remodeling and altered responsiveness of the gut to stressors later in life.-Aubert, P., Oleynikova, E., Rizvi, H., Ndjim, M., Le Berre-Scoul, C., Grohard, P. A., Chevalier, J., Segain, J.-P., Le Drean, G., Neunlist, M., Boudin, H. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Sistema Nervioso Entérico/fisiopatología , Tracto Gastrointestinal/fisiopatología , Exposición Materna , Animales , Autofagia , Tamaño Corporal , Peso Corporal , Colina O-Acetiltransferasa/metabolismo , Colon/fisiopatología , Corticosterona/sangre , Sistema Nervioso Entérico/enzimología , Femenino , Absorción Intestinal , Modelos Animales , Neuronas/enzimología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley
3.
Neurobiol Dis ; 94: 32-43, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27260836

RESUMEN

Single nucleotide polymorphisms in PICALM, a key component of clathrin-mediated endocytosis machinery, have been identified as genetic susceptibility loci for late onset Alzheimer's disease (LOAD). We previously reported that PICALM protein levels were decreased in AD brains and that PICALM was co-localised with neurofibrillary tangles in LOAD, familial AD with PSEN1 mutations and Down syndrome. In the present study, we analysed PICALM expression, cell localisation and association with pathological cellular inclusions in other tauopathies and in non-tau related neurodegenerative diseases. We observed that PICALM was associated with neuronal tau pathology in Pick disease and in progressive supranuclear palsy (PSP) and co-localised with both 3R and 4R tau positive inclusions unlike in corticobasal degeneration (CBD) or in frontotemporal lobar degeneration (FTLD)-MAPT P301L. PICALM immunoreactivities were not detected in tau-positive tufted astrocytes in PSP, astrocytic plaques in CBD, Lewy bodies in Lewy body disease, diffuse type (LBD) and in TDP-43-positive inclusions in FTLD. In the frontal cortex in tauopathies, the ratio of insoluble to soluble PICALM was increased while the level of soluble PICALM was decreased and was inversely correlated with the level of phosphotau. PICALM decrease was also significantly correlated with increased LC3-II and decreased Beclin-1 levels in tauopathies and in non-tau related neurodegenerative diseases. These results suggest that there is a close relationship between abnormal PICALM processing, tau pathology and impairment of autophagy in human neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Enfermedad de Pick/metabolismo , Neumotórax/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Fosforilación , Parálisis Supranuclear Progresiva/metabolismo , Tauopatías/patología
4.
Acta Neuropathol Commun ; 8(1): 79, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493451

RESUMEN

Synaptojanin 1 (SYNJ1) is a brain-enriched lipid phosphatase critically involved in autophagosomal/endosomal trafficking, synaptic vesicle recycling and metabolism of phosphoinositides. Previous studies suggest that SYNJ1 polymorphisms have significant impact on the age of onset of Alzheimer's disease (AD) and that SYNJ1 is involved in amyloid-induced toxicity. Yet SYNJ1 protein level and cellular localization in post-mortem human AD brain tissues have remained elusive. This study aimed to examine whether SYNJ1 localization and expression are altered in post-mortem AD brains. We found that SYNJ1 is accumulated in Hirano bodies, plaque-associated dystrophic neurites and some neurofibrillary tangles (NFTs). SYNJ1 immunoreactivity was higher in neurons and in the senile plaques in AD patients carrying one or two ApolipoproteinE (APOE) ε4 allele(s). In two large cohorts of APOE-genotyped controls and AD patients, SYNJ1 transcripts were significantly increased in AD temporal isocortex compared to control. There was a significant increase in SYNJ1 transcript in APOEε4 carriers compared to non-carriers in AD cohort. SYNJ1 was systematically co-enriched with PHF-tau in the sarkosyl-insoluble fraction of AD brain. In the RIPA-insoluble fraction containing protein aggregates, SYNJ1 proteins were significantly increased and observed as a smear containing full-length and cleaved fragments in AD brains. In vitro cleavage assay showed that SYNJ1 is a substrate of calpain, which is highly activated in AD brains. Our study provides evidence of alterations in SYNJ1 mRNA level and SYNJ1 protein degradation, solubility and localization in AD brains.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Agregación Patológica de Proteínas/patología , Anciano , Apolipoproteínas E/genética , Encéfalo/metabolismo , Calpaína/metabolismo , Células HEK293 , Humanos , Neuronas/metabolismo , Neuronas/patología , Proteínas tau/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-28443064

RESUMEN

Perinatal malnutrition is associated with low birth weight and an increased risk of developing metabolic syndrome in adulthood. Modification of food intake (FI) regulation was observed in adult rats born with intrauterine growth retardation induced by maternal dietary protein restriction during gestation and maintained restricted until weaning. Gastrointestinal peptides and particularly cholecystokinin (CCK) play a major role in short-term regulation of FI by relaying digestive signals to the hindbrain via the vagal afferent nerve (VAN). We hypothesized that vagal sensitivity to CCK could be affected in rats suffering from undernutrition [low protein (LP)] during fetal and postnatal life, leading to an altered gut-brain communication and impacting satiation. Our aim was to study short-term FI along with signals of appetite and satiation in adult LP rats compared to control rats. The dose-response to CCK injection was investigated on FI as well as the associated signaling pathways activated in nodose ganglia. We showed that LP rats have a reduced first-meal satiety ratio after a fasting period associated to a higher postprandial plasmatic CCK release, a reduced sensitivity to CCK when injected at low concentration and a reduced presence of CCK-1 receptor in nodose ganglia. Accordingly, the lower basal and CCK-induced phosphorylation of calcium/calmodulin-dependent protein kinase in nodose ganglia of LP rats could reflect an under-expressed vanilloid family of transient receptor potential cation channels on VAN. Altogether, the present data demonstrated a reduced vagal sensitivity to CCK in LP rats at adulthood, which could contribute to deregulation of FI reported in this model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA