RESUMEN
Human granulocytic anaplasmosis (HGA) is an emerging, rickettsial tick-borne disease caused by Anaplasma phagocytophilum. Sero-epidemiological data demonstrate that this pathogen has a worldwide distribution. The diagnosis of HGA requires a high index of clinical suspicion, even in endemic areas. In recent years, HGA has increasingly been reported from Asia and described in China, Japan, and Korea. We serologically and molecularly screened 467 patients with clinical suspicion of Anaplasmosis. The present study describes the epidemiology, clinical, and laboratory details of 6 confirmed and 43 probable cases of human granulocytic anaplasmosis. One of the HGA patients developed secondary invasive opportunistic Aspergillus fumigatus and Acinetobacter baumanii infection during the illness, which resulted in a fatal infection. The HGA patients without severe complications had excellent treatment responses to doxycycline. The emergence of this newly recognized tick-borne zoonotic HGA in North India is a significant concern for public health and is likely underdiagnosed, underreported, and untreated. Hence, it is also essential to establish a well-coordinated system for actively conducting tick surveillance, especially in the forested areas of the country.IMPORTANCEThe results of the present study show the clinical and laboratory evidence of autochthonous cases of Anaplasma phagocytophilum in North India. The results suggest the possibility of underdiagnosis of HGA in this geographical area. One of the HGA patients developed secondary invasive opportunistic Aspergillus fumigatus and Acinetobacter baumanii infection during the illness, which resulted in a fatal infection.
Asunto(s)
Anaplasma phagocytophilum , Anaplasmosis , Enfermedades por Picaduras de Garrapatas , Animales , Humanos , Anaplasmosis/diagnóstico , Anaplasmosis/tratamiento farmacológico , Anaplasmosis/epidemiología , Doxiciclina/uso terapéutico , China/epidemiología , IndiaRESUMEN
BACKGROUND & AIMS: Hepatopulmonary syndrome (HPS) is characterised by a defect in arterial oxygenation induced by pulmonary vascular dilatation in patients with liver disease. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, suppresses vasodilation by reducing nitric oxide (NO) production. We investigated the role of S1P in patients with HPS and the role of fingolimod as a therapeutic option in an experimental model of HPS. METHODS: Patients with cirrhosis with HPS (n = 44) and without HPS (n = 89) and 25 healthy controls were studied. Plasma levels of S1P, NO, and markers of systemic inflammation were studied. In a murine model of common bile duct ligation (CBDL), variations in pulmonary vasculature, arterial oxygenation, liver fibrosis, and inflammation were estimated before and after administration of S1P and fingolimod. RESULTS: Log of plasma S1P levels was significantly lower in patients with HPS than in those without HPS (3.1 ± 1.4 vs. 4.6 ± 0.2; p <0.001) and more so in severe intrapulmonary shunting than in mild and moderate intrapulmonary shunting (p <0.001). Plasma tumour necrosis factor-α (76.5 [30.3-91.6] vs. 52.9 [25.2-82.8]; p = 0.02) and NO (152.9 ± 41.2 vs. 79.2 ± 29.2; p = 0.001) levels were higher in patients with HPS than in those without HPS. An increase in Th17 (p <0.001) and T regulatory cells (p <0.001) was observed; the latter inversely correlated with plasma S1P levels. In the CBDL HPS model, fingolimod restored pulmonary vascular injury by increasing the arterial blood gas exchange and reducing systemic and pulmonary inflammation, resulting in improved survival (p = 0.02). Compared with vehicle treatment, fingolimod reduced portal pressure (p <0.05) and hepatic fibrosis and improved hepatocyte proliferation. It also induced apoptotic death in hepatic stellate cells and reduced collagen formation. CONCLUSIONS: Plasma S1P levels are low in patients with HPS and even more so in severe cases. Fingolimod, by improving pulmonary vascular tone and oxygenation, improves survival in a murine CBDL HPS model. IMPACT AND IMPLICATIONS: A low level of plasma sphingosine-1-phosphate (S1P) is associated with severe pulmonary vascular shunting, and hence, it can serve as a marker of disease severity in patients with hepatopulmonary syndrome (HPS). Fingolimod, a functional agonist of S1P, reduces hepatic inflammation, improves vascular tone, and thus retards the progression of fibrosis in a preclinical animal model of HPS. Fingolimod is being proposed as a potential novel therapy for management of patients with HPS.
Asunto(s)
Síndrome Hepatopulmonar , Ratas , Ratones , Animales , Síndrome Hepatopulmonar/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Ratas Sprague-Dawley , Cirrosis Hepática/complicaciones , Niacinamida/uso terapéutico , Inflamación/complicacionesRESUMEN
BACKGROUND: Sepsis is common in cirrhosis and is often a result of immune dysregulation. Specific stimuli and pathways of inter-cellular communications between immune cells in cirrhosis and sepsis are incompletely understood. Immune cell-derived extracellular vesicles (EV) were studied to understand mechanisms of sepsis in cirrhosis. METHODS: Immune cell-derived EV were measured in cirrhosis patients [Child-Turcotte-Pugh (Child) score A, n = 15; B n = 16; C n = 43 and Child-C with sepsis (n = 38)], and healthy controls (HC, n = 11). In vitro and in vivo functional relevance of EV in cirrhosis and associated sepsis was investigated. RESULTS: Monocyte, neutrophil and hematopoietic stem cells associated EV progressively increased with higher Child score (P < .001)and correlated with liver disease severity indices (r2 > 0.3, P < .001), which further increased in Child C sepsis than without sepsis(P < .001); monocyte EV showing the highest association with disease stage [P = .013; Odds ratio-4.14(1.34-12.42)]. A threshold level of monocyte EV of 53/µl predicted mortality in patients of Child C with sepsis [Odds ratio-6.2 (2.4-15.9), AUROC = 0.76, P < .01]. In vitro EV from cirrhotic with sepsis compared without sepsis, induced mobilization arrest in healthy monocytes within 4 hours (P = .004), reduced basal oxygen consumption rate (P < .001) and induced pro-inflammatory genes (P < .05). The septic-EV on adoptive transfer to C57/BL6J mice, induced sepsis-like condition within 24 h with leukocytopenia (P = .005), intrahepatic inflammation with increased CD11b + cells (P = .03) and bone marrow hyperplasia (P < .01). CONCLUSION: Extracellular vesicles induce functional impairment in circulating monocytes and contribute to the development and perpetuation of sepsis. High levels of monocyte EV correlate with mortality and can help early stratification of sicker patients.
Asunto(s)
Vesículas Extracelulares , Sepsis , Animales , Humanos , Cirrosis Hepática , Ratones , Monocitos , NeutrófilosRESUMEN
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties by inflicting damage to the cell membrane, suppressing virulence, and inhibiting microbial biofilms. Developing alternative therapies for HAIs and addressing AMR can be made easier and more affordable by combining nanoparticles with medicinal plants harboring antimicrobial properties. Hence, this study was undertaken to develop a novel graphene-silver nanocomposite via green synthesis using Trillium govanianum plant extract as a reducing agent. The resulting nanocomposite comprised silver nanoparticles embedded in graphene sheets. The antibacterial and antifungal properties of graphene-silver nanocomposites were investigated against several nosocomial pathogens, namely, Candida auris, Candida glabrata, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nanocomposite displayed broad-range antimicrobial potential against the test pathogens, with minimum inhibitory concentrations (MICs) ranging between 31.25 and 125.0 µg/mL, and biofilm inhibition up to 80-96%. Moreover, nanocomposite-functionalized urinary catheters demonstrated hemocompatibility towards sheep erythrocytes and imparted anti-fouling activity to the biomaterial, while also displaying biocompatibility towards HEK 293 cells. Collectively, this investigation highlights the possible application of green-synthesized GBNs as an effective alternative to conventional antibiotics for combating multidrug-resistant pathogens.
RESUMEN
BACKGROUND: Hepatopulmonary syndrome (HPS) is a pulmonary vasculature complication in the setting of liver disease that is characterized by pathological vasodilation resulting in arterial oxygenation defects. We investigated the role of extracellular vesicles (EV) in cirrhosis patients with HPS, as well as the functional effect of EV administration in a common bile duct ligation (CBDL) HPS mouse model. METHODS: A total of 113 cirrhosis patients were studied: 42 (Gr. A) with HPS and 71 (Gr. B) without HPS, as well as 22 healthy controls. Plasma levels of EV associated with endothelial cells, epithelial cells, and hepatocytes were measured. The cytokine cargoes were estimated using ELISA. The effect of EV administered intranasally in the CBDL mouse model was investigated for its functional effect in vascular remodeling and inflammation. RESULTS: We found endothelial cells (EC) associated EV (EC-EV) were elevated in cirrhosis patients with and without HPS (p < 0.001) than controls. EC-EV levels were higher in HPS patients (p = 0.004) than in those without HPS. The epithelial cell EVs were significantly high in cirrhosis patients than controls (p < 0.001) but no changes found in patients with HPS than without. There was a progressive increase in EC-EV levels from mild to severe intrapulmonary shunting in HPS patients (p = 0.02 mild vs. severe), and we were able to predict severe HPS with an AUROC of 0.85; p < 0.001. An inverse correlation of EC-EVs was found with hemoglobin (r = -0.24; p = 0.031) and PaO2 (r = 0.690; p = 0.01) and a direct correlation with MELD (r = 0.32; p = 0.014). Further, both TNF-α (p = 0.001) and IL-1ß (p = 0.021) as cargo levels were significantly elevated inside the EVs of HPS patients than without HPS. Interestingly, upon administration of intranasal EVs, there was a significant decrease in Evans blue accumulation and lung wet-dry ratio (p = 0.042; 0.038). A significant reduction was also noticed in inflammation and cholestasis. CONCLUSION: High levels of plasma EC-EV levels were found in patients with HPS with elevated pro-inflammatory cytokine cargoes. EC-EVs were indicative of severe HPS condition. In the CBDL HPS model, we were able to prove the beneficial effects of improving vascular tone, inflammation, and liver pathogenesis.
RESUMEN
BACKGROUND AND AIMS: Cirrhosis patients exhibit cytopenia, and, at times refractory neutropenia to granulocyte colony-stimulating factor (G-CSF), which acts through the CSF3-receptor (CSF3R), and changes in CSF3R can affect the response. We conducted this study to assess the CSF3R status and its relevance in cirrhotic patients. METHODS: Cirrhotic patients (n=127) and controls (n=26) with clinically indicated bone marrow (BM) examination were studied. BM assessment was done by qRT-PCR and immunohistochemistry (IHC) for CSF3R. Circulating G-CSF, CSF3R, and carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) were measured. BM hematopoietic precursor cells and their alterations were examined by flow cytometry. The findings were validated in liver cirrhosis patients who received G-CSF for severe neutropenia. RESULTS: The mean age was 48.6±13.4 years, and 80.3% were men. Circulatory CSF3R reduction was noted with the advancement of cirrhosis, and confirmed by qRT-PCR and IHC in BM. CSF3R decline was related to decreased hematopoietic stem cells (HSCs) and downregulation of CSF3R in the remaining HSCs. Cocultures confirmed that CEACAM1 led to CSF3R downregulation in BM cells by possible lysosomal degradation. Baseline low peripheral blood-(PB)-CSF3R also predisposed development of infections on follow-up. Decreased CSF3R was also associated with nonresponse to exogenous G-CSF treatment of neutropenia. CONCLUSIONS: Advanced liver cirrhosis was associated with low CSF3R and high CEACAM1 levels in the BM and circulation, making patients prone to infection and inadequate response to exogenous G-CSF.
RESUMEN
Malignant peripheral nerve sheath tumor (MPNST) is a rare tumor that accounts for 5% of all thoracic neoplasm usually located in the posterior mediastinum and is generally associated with a poor outcome. We present a case of MPNST of the anterior mediastinum presenting in a rare location leading to diagnostic dilemmas and treated primarily by surgical resection.