Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Genet ; 97(2): 264-275, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31573083

RESUMEN

Children with neurofibromatosis type 1 (NF1) may exhibit an incomplete clinical presentation, making difficult to reach a clinical diagnosis. A phenotypic overlap may exist in children with other RASopathies or with other genetic conditions if only multiple café-au-lait macules (CALMs) are present. The syndromes that can converge in these inconclusive phenotypes have different clinical courses. In this context, an early genetic testing has been proposed to be clinically useful to manage these patients. We present the validation and implementation into diagnostics of a custom NGS panel (I2HCP, ICO-IMPPC Hereditary Cancer Panel) for testing patients with a clinical suspicion of a RASopathy (n = 48) and children presenting multiple CALMs (n = 102). We describe the mutational spectrum and the detection rates identified in these two groups of individuals. We identified pathogenic variants in 21 out of 48 patients with clinical suspicion of RASopathy, with mutations in NF1 accounting for 10% of cases. Furthermore, we identified pathogenic mutations mainly in the NF1 gene, but also in SPRED1, in more than 50% of children with multiple CALMs, exhibiting an NF1 mutational spectrum different from a group of clinically diagnosed NF1 patients (n = 80). An NGS panel strategy for the genetic testing of these two phenotype-defined groups outperforms previous strategies.


Asunto(s)
Manchas Café con Leche/genética , Diagnóstico Precoz , Pruebas Genéticas , Neurofibromatosis 1/genética , Manchas Café con Leche/diagnóstico , Manchas Café con Leche/patología , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Mutación/genética , Proteínas de Neoplasias/genética , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Fenotipo
2.
iScience ; 26(2): 106096, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818284

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas of the peripheral nervous system that develop either sporadically or in the context of neurofibromatosis type 1 (NF1). MPNST diagnosis can be challenging and treatment outcomes are poor. We present here a resource consisting of the genomic characterization of 9 widely used human MPNST cell lines for their use in translational research. NF1-related cell lines recapitulated primary MPNST copy number profiles, exhibited NF1, CDKN2A, and SUZ12/EED tumor suppressor gene (TSG) inactivation, and presented no gain-of-function mutations. In contrast, sporadic cell lines collectively displayed different TSG inactivation patterns and presented kinase-activating mutations, fusion genes, altered mutational frequencies and COSMIC signatures, and different methylome-based classifications. Cell lines re-classified as melanomas and other sarcomas exhibited a different drug-treatment response. Deep genomic analysis, methylome-based classification, and cell-identity marker expression, challenged the identity of common MPNST cell lines, opening an opportunity to revise MPNST differential diagnosis.

3.
Mol Ther Nucleic Acids ; 30: 493-505, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36420221

RESUMEN

NF2-related schwannomatosis (NF2-related SWN) is an autosomal dominant condition caused by loss of function variants in the NF2 gene, which codes for the protein Merlin and is characterized by the development of multiple tumors of the nervous system. The clinical presentation of the disease is variable and related to the type of the inherited germline variant. Here, we tested if phosphorodiamidate morpholino oligomers (PMOs) could be used to correct the splice signaling caused by variants at ±13 within the intron-exon boundary region and showed that the PMOs designed for these variants do not constitute a therapeutic approach. Furthermore, we evaluated the use of PMOs to decrease the severity of the effects of NF2 truncating variants with the aim of generating milder hypomorphic isoforms in vitro through the induction of the in-frame deletion of the exon-carrying variant. We were able to specifically induce the skipping of exons 4, 8, and 11 maintaining the NF2 gene reading frame at cDNA level. Only the skipping of exon 11 produced a hypomorphic Merlin (Merlin-e11), which is able to partially rescue the observed phenotype in primary fibroblast cultures from NF2-related SWN patients, being encouraging for the treatment of patients harboring truncating variants located in exon 11.

4.
Transl Stroke Res ; 11(3): 326-336, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31475302

RESUMEN

An accurate etiological classification is key to optimize secondary prevention after ischemic stroke, but the cause remains undetermined in one third of patients. Several studies pointed out the usefulness of circulating gene expression markers to discriminate cardioembolic (CE) strokes, mainly due to atrial fibrillation (AF), while only exploring them in small cohorts. A systematic review of studies analyzing high-throughput gene expression in blood samples to discriminate CE strokes was performed. Significantly dysregulated genes were considered as candidates, and a selection of them was validated by RT-qPCR in 100 patients with defined CE or atherothrombotic (LAA) stroke etiology. Longitudinal performance was evaluated in 12 patients at three time points. Their usefulness as biomarkers for AF was tested in 120 cryptogenic strokes and 100 individuals at high-risk for stroke. Three published studies plus three unpublished datasets were considered for candidate selection. Sixty-seven genes were found dysregulated in CE strokes. CREM, PELI1, and ZAK were verified to be up-regulated in CE vs LAA (p = 0.010, p = 0.003, p < 0.001, respectively), without changes in their expression within the first 24 h after stroke onset. The combined up-regulation of these three biomarkers increased the probability of suffering from CE stroke by 23-fold. In cryptogenic strokes with subsequent AF detection, PELI1 and CREM showed overexpression (p = 0.017, p = 0.059, respectively), whereas in high-risk asymptomatic populations, all three genes showed potential to detect AF (p = 0.007, p = 0.007, p = 0.015). The proved discriminatory capacity of these gene expression markers to detect cardioembolism even in cryptogenic strokes and asymptomatic high-risk populations might bring up their use as biomarkers.


Asunto(s)
Isquemia Encefálica/sangre , Isquemia Encefálica/genética , Accidente Cerebrovascular Embólico/sangre , Accidente Cerebrovascular Embólico/genética , Expresión Génica , Fibrilación Atrial/sangre , Fibrilación Atrial/genética , Biomarcadores/sangre , Isquemia Encefálica/diagnóstico , Accidente Cerebrovascular Embólico/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA