RESUMEN
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Presentación de Antígeno , Neoplasias Pulmonares/patología , Medicina de Precisión , Complejo de la Endopetidasa Proteasomal/metabolismo , Microambiente TumoralRESUMEN
Anticalin proteins are a novel class of clinical-stage biopharmaceuticals with high potential in various disease areas. Anticalin proteins, derived from extracellular human lipocalins are single-chain proteins, with a highly stable structure that can be engineered to bind with high specificity and potency to targets of therapeutic relevance. The small size and stable structure support their development as inhalable biologics in the field of respiratory diseases as already demonstrated for PRS-060/AZD1402, an Anticalin protein currently undergoing clinical development for the treatment of asthma. Anticalin proteins provide formatting flexibility which allows fusion with the same or other Anticalin proteins, or with other biologics to generate multivalent, multiparatopic or multispecific fusion proteins. The fusion of Anticalin proteins to antibodies allows the generation of potent therapeutic proteins with new modes of action, such as antibody-Anticalin bispecific proteins with tumor-localized activity. Cinrebafusp alfa and PRS-344/S095012 antibody-Anticalin bispecific proteins were designed to reduce potential systemic toxicity by localizing the activity to the tumor, and are currently in clinical development in immuno-oncology. Furthermore, the ease in generating bi- and multispecifics as well as the small and stable structure prompted the investigation of Anticalin proteins for the CAR T space, opening additional potential treatment options based on Anticalin protein therapies.