Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Diabetes ; 60(4): 1158-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21350084

RESUMEN

OBJECTIVE: The study objective was to determine the key early mechanisms underlying the beneficial redistribution, function, and inflammatory profile of adipose tissue in 11ß-hydroxysteroid dehydrogenase type 1 knockout (11ß-HSD1(-/-)) mice fed a high-fat (HF) diet. RESEARCH DESIGN AND METHODS: By focusing on the earliest divergence in visceral adiposity, subcutaneous and visceral fat depots from 11ß-HSD1(-/-) and C57Bl/6J control mice fed an HF diet for 4 weeks were used for comparative microarray analysis of gene expression, and differences were validated with real-time PCR. Key changes in metabolic signaling pathways were confirmed using Western blotting/immunoprecipitation, and fat cell size was compared with the respective chow-fed control groups. Altered adipose inflammatory cell content and function after 4 weeks (early) and 18 weeks (chronic) of HF feeding was investigated using fluorescence (and magnetic)-activated cell sorting analysis, immunohistochemistry, and in situ hybridization. RESULTS: In subcutaneous fat, HF-fed 11ß-HSD1(-/-) mice showed evidence of enhanced insulin and ß-adrenergic signaling associated with accretion of smaller metabolically active adipocytes. In contrast, reduced 11ß-HSD1(-/-) visceral fat accumulation was characterized by maintained AMP kinase activation, not insulin sensitization, and higher adipocyte interleukin-6 release. Intracellular glucocorticoid deficiency was unexpectedly associated with suppressed inflammatory signaling and lower adipocyte monocyte chemoattractant protein-1 secretion with strikingly reduced cytotoxic T-cell and macrophage infiltration, predominantly in visceral fat. CONCLUSIONS: Our data define for the first time the novel and distinct depot-specific mechanisms driving healthier fat patterning and function as a result of reduced intra-adipose glucocorticoid levels.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Inflamación/metabolismo , Obesidad Abdominal/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Western Blotting , Grasas de la Dieta/efectos adversos , Activación Enzimática/efectos de los fármacos , Citometría de Flujo , Glucocorticoides/farmacología , Inmunohistoquímica , Hibridación in Situ , Inflamación/genética , Interleucina-6/farmacología , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Ratones Mutantes , Obesidad Abdominal/inducido químicamente , Obesidad Abdominal/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
PLoS One ; 6(9): e23944, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21915269

RESUMEN

BACKGROUND: Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. RESULTS: To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. CONCLUSIONS: A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Obesidad/genética , Transcriptoma/genética , Células 3T3-L1 , Animales , Biología Computacional , Factores de Crecimiento de Fibroblastos/genética , Glucógeno/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/genética , Sitios de Carácter Cuantitativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Complemento/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA