Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 299(9): 105145, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562568

RESUMEN

The inhibitory mechanism of an intrinsically disordered proteasome inhibitor identified over 30 years ago has finally been revealed by cryo-electron microscopy by Hsu et al. in a recent report in the Journal of Biological Chemistry. The structure, coupled with biochemical and cell-based experiments, resolves lingering questions about how the inhibitor achieves multisite inhibition of proteasomal protease activity, while raising several exciting new questions on the nature of proteasome subpopulations in the process.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Inhibidores de Proteasoma/farmacología , Microscopía por Crioelectrón , Complejo de la Endopetidasa Proteasomal/química
2.
Yeast ; 37(5-6): 327-335, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32401365

RESUMEN

The budding yeast and model eukaryote Saccharomyces cerevisiae has been invaluable for purification and analysis of numerous evolutionarily conserved proteins and multisubunit complexes that cannot be readily reconstituted in Escherichia coli. For many studies, it is desirable to functionalize a particular protein or subunit of a complex with a ligand, fluorophore or other small molecule. Enzyme-catalysed site-specific modification of proteins bearing short peptide tags is a powerful strategy to overcome the limitations associated with traditional nonselective labelling chemistries. Towards this end, we developed a suite of template plasmids for C-terminal tagging with short peptide sequences that can be site-specifically functionalized with high efficiency and selectivity. We have also combined these sequences with the FLAG tag as a handle for purification or immunological detection of the modified protein. We demonstrate the utility of these plasmids by site-specifically labelling the 28-subunit core particle subcomplex of the 26S proteasome with the small molecule fluorophore Cy5. The full set of plasmids has been deposited in the non-profit plasmid repository Addgene (http://www.addgene.org).


Asunto(s)
Epítopos/genética , Péptidos/metabolismo , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Escherichia coli , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Transferasas
3.
J Biol Chem ; 292(52): 21466-21480, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29109144

RESUMEN

Turnover of the 26S proteasome by autophagy is an evolutionarily conserved process that governs cellular proteolytic capacity and eliminates inactive particles. In most organisms, proteasomes are located in both the nucleus and cytoplasm. However, the specific autophagy routes for nuclear and cytoplasmic proteasomes are unclear. Here, we investigate the spatial control of autophagic proteasome turnover in budding yeast (Saccharomyces cerevisiae). We found that nitrogen starvation-induced proteasome autophagy is independent of known nucleophagy pathways but is compromised when nuclear protein export is blocked. Furthermore, via pharmacological tethering of proteasomes to chromatin or the plasma membrane, we provide evidence that nuclear proteasomes at least partially disassemble before autophagic turnover, whereas cytoplasmic proteasomes remain largely intact. A targeted screen of autophagy genes identified a requirement for the conserved sorting nexin Snx4 in the autophagic turnover of proteasomes and several other large multisubunit complexes. We demonstrate that Snx4 cooperates with sorting nexins Snx41 and Snx42 to mediate proteasome turnover and is required for the formation of cytoplasmic proteasome puncta that accumulate when autophagosome formation is blocked. Together, our results support distinct mechanistic paths in the turnover of nuclear versus cytoplasmic proteasomes and point to a critical role for Snx4 in cytoplasmic agglomeration of proteasomes en route to autophagic destruction.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/fisiología , Autofagia/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
4.
Biochemistry ; 56(18): 2363-2371, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28402631

RESUMEN

With the formidable growth in the volume of genetic information, it has become essential to identify and characterize mutations in macromolecules not only to predict contributions to disease processes but also to guide the design of therapeutic strategies. While mutations of certain residues have a predictable phenotype based on their chemical nature and known structural position, many types of mutations evade prediction based on current information. Described in this work are the crystal structures of two cancer variants located in the palm domain of DNA polymerase ß (pol ß), S229L and G231D, whose biological phenotype was not readily linked to a predictable structural implication. Structural results demonstrate that the mutations elicit their effect through subtle influences on secondary interactions with a residue neighboring the active site. Residues 229 and 231 are 7.5 and 12.5 Å, respectively, from the nearest active site residue, with a ß-strand between them. A residue on this intervening strand, M236, appears to transmit fine structural perturbations to the catalytic metal-coordinating residue D256, affecting its conformational stability.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Mutación , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa beta/genética , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
5.
PLoS Genet ; 10(11): e1004753, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375110

RESUMEN

Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Inestabilidad Genómica/genética , Células Germinativas , Timina ADN Glicosilasa/genética , Dominio Catalítico/genética , Reparación del ADN/genética , Humanos , Polimorfismo de Nucleótido Simple , Relación Estructura-Actividad , Especificidad por Sustrato , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/metabolismo
6.
J Biol Chem ; 289(20): 13708-16, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24668809

RESUMEN

DNA polymerase ß (Pol ß) plays a key role in base excision repair (BER) by filling in small gaps that are generated after base adducts are excised from the DNA. Pol ß is mutated in a large number of colorectal tumors, and these mutations may drive carcinogenesis. In the present study, we wished to determine whether the S229L somatic Pol ß variant identified in a stage 3 colorectal tumor is a driver of carcinogenesis. We show that S229L does not possess any defects in binding to either DNA or nucleotides compared with the WT enzyme, but exhibits a significant loss of polymerization efficiency, largely due to an 8-fold decrease in the polymerization rate. S229L participates in BER, but due to its lower catalytic rate, does so more slowly than WT. Expression of S229L in mammalian cells induces the accumulation of BER intermediate substrates, chromosomal aberrations, and cellular transformation. Our results are consistent with the interpretation that S229L is a driver of carcinogenesis, likely as a consequence of its slow polymerization activity during BER in vivo.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Mutación , Multimerización de Proteína/genética , Animales , Secuencia de Bases , Carcinogénesis/genética , Línea Celular , Aberraciones Cromosómicas , Neoplasias del Colon/enzimología , ADN/biosíntesis , ADN/genética , ADN/metabolismo , ADN Polimerasa beta/química , Reparación del ADN , Regulación Enzimológica de la Expresión Génica , Inestabilidad Genómica/genética , Humanos , Cinética , Ratones , Estadificación de Neoplasias , Nucleótidos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
7.
PLoS Genet ; 8(11): e1003052, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144635

RESUMEN

Several germline single nucleotide polymorphisms (SNPs) have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase ß (Pol ß), encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER), a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797) in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol ß protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.


Asunto(s)
Transformación Celular Neoplásica , Aberraciones Cromosómicas , ADN Polimerasa beta , Inestabilidad Genómica/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Línea Celular , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Daño del ADN/genética , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Reparación del ADN/genética , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Células Germinativas , Humanos , Ratones , Estrés Oxidativo
8.
J Biol Chem ; 287(28): 23840-9, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22573322

RESUMEN

Rapidly advancing technology has resulted in the generation of the genomic sequences of several human tumors. We have identified several mutations of the DNA polymerase ß (pol ß) gene in human colorectal cancer. We have demonstrated that the expression of the pol ß G231D variant increased chromosomal aberrations and induced cellular transformation. The transformed phenotype persisted in the cells even once the expression of G231D was extinguished, suggesting that it resulted as a consequence of genomic instability. Biochemical analysis revealed that its catalytic rate was 140-fold slower than WT pol ß, and this was a result of the decreased binding affinity of nucleotides by G231D. Residue 231 of pol ß lies in close proximity to the template strand of the DNA. Molecular modeling demonstrated that the change from a small and nonpolar glycine to a negatively charged aspartate resulted in a repulsion between the template and residue 231 leading to the distortion of the dNTP binding pocket. In addition, expression of G231D was insufficient to rescue pol ß-deficient cells treated with chemotherapeutic agents suggesting that these agents may be effectively used to treat tumors harboring this mutation. More importantly, this suggests that the G231D variant has impaired base excision repair. Together, these data indicate that the G231D variant plays a role in driving cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , ADN Polimerasa beta/genética , Inestabilidad Genómica/genética , Mutación , Animales , Antineoplásicos/farmacología , Secuencia de Bases , Biocatálisis , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Aberraciones Cromosómicas , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , ADN/química , ADN/genética , ADN/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Reparación del ADN , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Cinética , Ratones , Ratones Noqueados , Modelos Moleculares , Unión Proteica
9.
J Biol Chem ; 287(28): 23830-9, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22577134

RESUMEN

Previous small scale sequencing studies have indicated that DNA polymerase ß (pol ß) variants are present on average in 30% of human tumors of varying tissue origin. Many of these variants have been shown to have aberrant enzyme function in vitro and to induce cellular transformation and/or genomic instability in vivo, suggesting that their presence is associated with tumorigenesis or its progression. In this study, the human POLB gene was sequenced in a collection of 134 human colorectal tumors and was found to contain coding region mutations in 40% of the samples. The variants map to many different sites of the pol ß protein and are not clustered. Many variants are nonsynonymous amino acid substitutions predicted to affect enzyme function. A subset of these variants was found to have reduced enzyme activity in vitro and failed to fully rescue pol ß-deficient cells from methylmethane sulfonate-induced cytotoxicity. Tumors harboring variants with reduced enzyme activity may have compromised base excision repair function, as evidenced by our methylmethane sulfonate sensitivity studies. Such compromised base excision repair may drive tumorigenesis by leading to an increase in mutagenesis or genomic instability.


Asunto(s)
Sustitución de Aminoácidos , Neoplasias Colorrectales/genética , ADN Polimerasa beta/genética , Mutación , Animales , Sitios de Unión/genética , Biocatálisis , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Prueba de Complementación Genética , Células HEK293 , Humanos , Cinética , Metilmetanosulfonato/toxicidad , Ratones , Ratones Noqueados , Modelos Moleculares , Mutágenos/toxicidad , Tasa de Mutación , Estadificación de Neoplasias , Estructura Terciaria de Proteína
10.
Semin Cancer Biol ; 20(5): 320-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20955798

RESUMEN

Cells sustain endogenous DNA damage at rates greater than 20,000 DNA lesions per cell per day. These damages occur largely as a result of the inherently unstable nature of DNA and the presence of reactive oxygen species within cells. The base excision repair system removes the majority of DNA lesions resulting from endogenous DNA damage. There are several enzymes that function during base excision repair. Importantly, there are over 100 germline single nucleotide polymorphisms in genes that function in base excision repair and that result in non-synonymous amino acid substitutions in the proteins they encode. Somatic variants of these enzymes are also found in human tumors. Variant repair enzymes catalyze aberrant base excision repair. Aberrant base excision repair combined with continuous endogenous DNA damage over time has the potential to lead to a mutator phenotype. Mutations that arise in key growth control genes, imbalances in chromosome number, chromosomal translocations, and loss of heterozygosity can result in the initiation of human cancer or its progression.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , Mutación , Sustitución de Aminoácidos , Animales , Aberraciones Cromosómicas , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Expresión Génica , Humanos , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa , Polimorfismo de Nucleótido Simple , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
11.
Chem Res Toxicol ; 23(2): 396-404, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19994902

RESUMEN

Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes, and we hypothesized that this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated the STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation.


Asunto(s)
Cromo/toxicidad , Células Epiteliales/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factor 7 Regulador del Interferón/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Animales , Carcinógenos Ambientales/toxicidad , Células Epiteliales/metabolismo , Humanos , Factor 7 Regulador del Interferón/efectos de los fármacos , Factor 7 Regulador del Interferón/genética , Ratones , Proteínas Proto-Oncogénicas c-fyn/farmacología , Mucosa Respiratoria/metabolismo , Transducción de Señal
12.
Am J Respir Cell Mol Biol ; 41(1): 69-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19097988

RESUMEN

We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release.


Asunto(s)
Bronquios/metabolismo , Cloruros/toxicidad , Células Epiteliales/efectos de los fármacos , Metalotioneína/metabolismo , Níquel/toxicidad , Compuestos de Zinc/toxicidad , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Separación Celular/métodos , Células Cultivadas , Quelantes/farmacología , Cloruros/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Etilaminas/farmacología , Citometría de Flujo , Colorantes Fluorescentes , Humanos , Metalotioneína/genética , Ratones , Ratones Noqueados , Compuestos Policíclicos , Piridinas , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Transfección , Regulación hacia Arriba , Compuestos de Zinc/metabolismo , Factor de Transcripción MTF-1
13.
Cell Rep ; 26(2): 483-495.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625330

RESUMEN

The 26S proteasome is the central ATP-dependent protease in eukaryotes and is essential for organismal health. Proteasome assembly is mediated by several dedicated, evolutionarily conserved chaperone proteins. These chaperones associate transiently with assembly intermediates but are absent from mature proteasomes. Chaperone eviction upon completion of proteasome assembly is necessary for normal proteasome function, but how they are released remains unresolved. Here, we demonstrate that the Nas6 assembly chaperone, homolog of the human oncogene gankyrin, is evicted from nascent proteasomes during completion of assembly via a conformation-specific allosteric interaction of the Rpn5 subunit with the proteasomal ATPase ring. Subsequent ATP binding by the ATPase subunit Rpt3 promotes conformational remodeling of the ATPase ring that evicts Nas6 from the nascent proteasome. Our study demonstrates how assembly-coupled allosteric signals promote chaperone eviction and provides a framework for understanding the eviction of other chaperones from this biomedically important molecular machine.


Asunto(s)
Sitio Alostérico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
14.
Biochem J ; 402(2): 261-9, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17078813

RESUMEN

Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein-DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 microM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3alpha and STAT3beta. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression.


Asunto(s)
Bronquios/metabolismo , Núcleo Celular/metabolismo , Cromo/farmacología , Células Epiteliales/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fosfotirosina/metabolismo , Factor de Transcripción STAT3/metabolismo , Transporte Activo de Núcleo Celular , Bronquios/citología , Bronquios/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Interleucina-6/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Unión Proteica , ARN Mensajero/genética , Factores de Tiempo , Activación Transcripcional
15.
Oncotarget ; 8(49): 85883-85895, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156764

RESUMEN

Base excision repair (BER) is a key genome maintenance pathway. The NEIL1 DNA glycosylase recognizes oxidized bases, and likely removes damage in advance of the replication fork. The rs5745906 SNP of the NEIL1 gene is a rare human germline variant that encodes the NEIL1 G83D protein, which is devoid of DNA glycosylase activity. Here we show that expression of G83D NEIL1 in MCF10A immortalized but non-transformed mammary epithelial cells leads to replication fork stress. Upon treatment with hydrogen peroxide, we observe increased levels of stalled replication forks in cells expressing G83D NEIL1 versus cells expressing the wild-type (WT) protein. Double-strand breaks (DSBs) arise in G83D-expressing cells during the S and G2/M phases of the cell cycle. Interestingly, these breaks result in genomic instability in the form of high levels of chromosomal aberrations and micronuclei. Cells expressing G83D also grow in an anchorage independent manner, suggesting that the genomic instability results in a carcinogenic phenotype. Our results are consistent with the idea that an inability to remove oxidative damage in an efficient manner at the replication fork leads to genomic instability and mutagenesis. We suggest that individuals who harbor the G83D NEIL1 variant face an increased risk for human cancer.

16.
Mol Cancer Res ; 15(3): 269-280, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28074003

RESUMEN

Resistance to cancer chemotherapies leads to deadly consequences, yet current research focuses only on the roles of somatically acquired mutations in this resistance. The mutational status of the germline is also likely to play a role in the way cells respond to chemotherapy. The carrier status for the POLB rs3136797 germline mutation encoding P242R DNA polymerase beta (Pol ß) is associated with poor prognosis for lung cancer, specifically in response to treatment with cisplatin. Here, it is revealed that the P242R mutation is sufficient to promote resistance to cisplatin in human cells and in mouse xenografts. Mechanistically, P242R Pol ß acts as a translesion polymerase and prefers to insert the correct nucleotide opposite cisplatin intrastrand cross-links, leading to the activation of the nucleotide excision repair (NER) pathway, removal of crosslinks, and resistance to cisplatin. In contrast, wild-type (WT) Pol ß preferentially inserts the incorrect nucleotide initiating mismatch repair and cell death. Importantly, in a mouse xenograft model, tumors derived from lung cancer cells expressing WT Pol ß displayed a slower rate of growth when treated with cisplatin, whereas tumors expressing P242R Pol ß had no response to cisplatin. Pol ß is critical for mediating crosstalk in response to cisplatin. The current data strongly suggest that the status of Pol ß influences cellular responses to crosslinking agents and that Pol ß is a promising biomarker to predict responses to specific chemotherapies. Finally, these results highlight that the genetic status of the germline is a critical factor in the response to cancer treatment.Implications: Pol ß has prognostic biomarker potential in the treatment of cancer with cisplatin and perhaps other intrastrand crosslinking agents. Mol Cancer Res; 15(3); 269-80. ©2017 AACR.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , ADN Polimerasa beta/genética , Mutación de Línea Germinal , Neoplasias/tratamiento farmacológico , Células A549 , Animales , Reparación de la Incompatibilidad de ADN , ADN Polimerasa beta/metabolismo , Resistencia a Antineoplásicos , Células HCT116 , Humanos , Células MCF-7 , Ratones , Neoplasias/enzimología , Neoplasias/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Mol Cancer Res ; 14(11): 1068-1077, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27621267

RESUMEN

Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. IMPLICATIONS: The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/inducido químicamente , Transformación Celular Neoplásica/genética , ADN Polimerasa beta/genética , Estrógenos/efectos adversos , Mutación de Línea Germinal , Neoplasias de la Mama/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/inducido químicamente , Daño del ADN , Reparación del ADN , Femenino , Predisposición Genética a la Enfermedad , Guanina/análogos & derivados , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple
18.
Cardiovasc Toxicol ; 5(1): 29-41, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15738583

RESUMEN

Exposure to arsenic in drinking water increases incidence of cardiovascular diseases. However, the basic mechanisms and genetic changes that promote these diseases are unknown. This study investigated the effects of chronic arsenic exposure on vessel growth and expression of angiogenic and tissue remodeling genes in cardiac tissues. Male mice were exposed to low to moderately high levels of arsenite (AsIII) for 5, 10, or 20 wk in their drinking water. Vessel growth in Matrigel implants was tested during the last 2 wk of each exposure period. Implant vascularization increased in mice exposed to 5-500 ppb AsIII for 5 wk. Similar increases were seen following exposure to 50-250 ppb of AsIII over 20 wk, but the response to 500 ppb decreased with time. RT-PCR analysis of cardiac mRNA revealed differential expression of angiogenic or tissue remodeling genes, such as vascular endothelial cell growth factor (VEGF), VEGF receptors, plasminogen activator inhibitor-1, endothelin-1, and matrix metalloproteinase-9, which varied with time or amount of exposure. VEGF receptor mRNA and cardiac microvessel density were reduced by exposure to 500 ppb AsIII for 20 wk. These data demonstrate differential concentration and time-dependent effects of chronic arsenic exposure on cardiovascular phenotype and vascular remodeling that may explain the etiology for AsIII-induced disease.


Asunto(s)
Proteínas Angiogénicas/biosíntesis , Arsénico/toxicidad , Neovascularización Patológica/inducido químicamente , Proteínas Angiogénicas/genética , Animales , Arsénico/administración & dosificación , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/patología
19.
Toxicol Sci ; 81(2): 467-79, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15229366

RESUMEN

Mycoplasma (MP), such as the species M. fermentans, possess remarkable immunoregulatory properties and can potentially establish chronic latent infections with little signs of disease. Atmospheric particulate matter (PM) is a complex and diverse component of air pollution associated with adverse health effects. We hypothesized that MP modulate the cellular responses induced by chemical stresses such as residual oil fly ash (ROFA), a type of PM rich in transition metals. We assessed the release of interleukin-6 (IL-6), a prototypic immune-modulating cytokine, in response to PM from different sources in human lung fibroblasts (HLF) deliberately infected with M. fermentans. We found that M. fermentans and ROFA together synergistically stimulated production of IL-6 compared to either stimuli alone. Compared to several other PM, ROFA appeared most able to potentiate IL-6 release. The potentiating effect of live MP infection could be mimicked by M. fermentans-derived macrophage-activating lipopeptide-2 (MALP-2), a known Toll-like receptor-2 agonist. The aqueous fraction of ROFA also contained potent IL-6 inducing activity in concert with MALP-2, and exposure to several defined metal salts indicated that Ni and, to a lesser extent V, (but not Cu) could synergistically act with MALP-2 to induce IL-6. These data indicate that microorganisms like MP can interact with environmental stimuli such as PM-derived metals to synergistically activate signaling pathways that control lung cell cytokine production and, thus, can potentially modulate adverse health effects of PM exposure.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Carbono/toxicidad , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Pulmón/metabolismo , Infecciones por Mycoplasma/metabolismo , Mycoplasma fermentans , Níquel/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ceniza del Carbón , Cartilla de ADN , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Fibroblastos/efectos de los fármacos , Humanos , Interleucina-8/biosíntesis , Lipopéptidos , Pulmón/citología , Pulmón/efectos de los fármacos , Oligopéptidos/farmacología , Material Particulado , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Toxicol Sci ; 110(1): 212-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19403854

RESUMEN

Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)-dependent pathway to silence nickel (Ni)-induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase-activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1 alpha activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells.


Asunto(s)
Cromo/farmacología , Células Epiteliales/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Factor de Transcripción STAT1/fisiología , Western Blotting , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Genes src/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunoprecipitación , Luciferasas/metabolismo , Metales/toxicidad , Níquel/antagonistas & inhibidores , Níquel/farmacología , Fosforilación , Hidrocarburos Policíclicos Aromáticos/toxicidad , ARN/biosíntesis , ARN/aislamiento & purificación , Mucosa Respiratoria/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA