Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Invest New Drugs ; 37(5): 994-1005, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30661149

RESUMEN

Thiosemicarbazone is a class of compounds with potential applications in medicine, presenting high capacity to inhibit the growth of cancer cells as well as low toxicity. Because of high interest in anticancer studies involving thiosemicarbazones as new chemotherapeutic agents, a synthetic thiosemicarbazone derivative, 4-N-(2'-methoxy-styryl)-thiosemicarbazone (MTSC) was evaluated in vivo against Ehrlich carcinoma in an animal model. In vivo results demonstrated that MTSC treatment induced the survival of mice and altered significantly the body weight of the surviving mice 12 days after tumor inoculation. Treatment with 30 mg/kg of MTSC exhibited effective cytotoxic activity with T/C values of 150.49% (1 dose) and 278% (2 doses). Its interaction with human serum albumin (HSA), which plays a crucial role in the biodistribution of a wide variety of ligands, was investigated by multiple spectroscopic techniques at 296 K, 303 K, and 310 K, as well as by theoretical calculations. The interaction between HSA and MTSC occurs via ground-state association in the subdomain IIA (Sudlow's site I). The binding is moderate (Ka ≈ 104 M-1), spontaneous, entropically, and enthalpically driven. Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces. Overall, the interaction HSA:MTSC could provide therapeutic benefits, improving its cytotoxic efficacy and tolerability.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Ehrlich/patología , Leucemia Eritroblástica Aguda/patología , Albúmina Sérica Humana/metabolismo , Tiosemicarbazonas/farmacología , Animales , Antineoplásicos/química , Apoptosis , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/metabolismo , Proliferación Celular , Femenino , Humanos , Técnicas In Vitro , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Leucemia Eritroblástica Aguda/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Albúmina Sérica Humana/química , Tiosemicarbazonas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Bioorg Chem ; 81: 79-87, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118988

RESUMEN

A series of N-aryl-2-phenyl-hydrazinecarbothioamides have been investigated as possible inhibitors of tyrosinase, an enzyme involved in the development of melanomas. The hydrazinecarbothioamides 1-6 were synthesized from the reaction between phenylhydrazine and isothiocyanates, for which three different methods have been employed, namely stirring at room temperature, by microwave irradiation or by mechanochemical grinding. Quantitative yields were obtained for the later technique. Compound 4 showed the best value for tyrosinase inhibition (IC50 = 22.6 µM), which occurs through an uncompetitive mechanism. Molecular docking results suggested that 4 can interact via T-stacking with the substrate L-DOPA and via hydrogen bonding and hydrophobic forces with the amino acid residues Ala-79, His-243, Val-247, Phe-263, Val-282, and Glu-321. The interaction between human serum albumin (HSA) and compound 4 occurs through a ground state association and does not perturb the secondary structure of the albumin as well as the microenvironment around Tyr and Trp residues. The binding is spontaneous, moderate and occurs mainly in the Sudlow's site I. Molecular docking results suggested hydrogen bonding, hydrophobic and electrostatic interactions as the main binding forces between the compound 4 and the amino acid residues Lys-198, Trp-214, Glu-449, Leu-452, and Leu-480.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hidrazinas/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Albúmina Sérica Humana/antagonistas & inhibidores , Tioamidas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Hidrazinas/síntesis química , Hidrazinas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Albúmina Sérica Humana/química , Relación Estructura-Actividad , Tioamidas/síntesis química , Tioamidas/química
3.
Molecules ; 20(10): 19526-39, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26516829

RESUMEN

In the North of Brazil (Pará and Amazonas states) the leaves of the plant Talinum triangulare (popular: cariru) replace spinach as food. From a phytochemical point of view, they are rich in compounds of the group of pheophytins. These substances, related to chlorophyll, have photophysical properties that give them potential application in photodynamic therapy. Human serum albumin (HSA) is one of the main endogenous vehicles for biodistribution of molecules by blood plasma. Association constants and thermodynamic parameters for the interaction of HSA with pheophytin from Talinum triangulare were studied by UV-Vis absorption, fluorescence techniques, and molecular modeling (docking). Fluorescence quenching of the HSA's internal fluorophore (tryptophan) at temperatures 296 K, 303 K, and 310 K, resulted in values for the association constants of the order of 104 L∙mol(-1), indicating a moderate interaction between the compound and the albumin. The negative values of ΔG° indicate a spontaneous process; ΔH° = 15.5 kJ∙mol(-1) indicates an endothermic process of association and ΔS° = 0.145 kJ∙mol(-1)∙K(-1) shows that the interaction between HSA and pheophytin occurs mainly by hydrophobic factors. The observed Trp fluorescence quenching is static: there is initial non-fluorescent association, in the ground state, HSA:Pheophytin. Possible solution obtained by a molecular docking study suggests that pheophytin is able to interact with HSA by means of hydrogen bonds with three lysine and one arginine residues, whereas the phytyl group is inserted in a hydrophobic pocket, close to Trp-214.


Asunto(s)
Cactaceae/química , Simulación del Acoplamiento Molecular/métodos , Feofitinas/química , Albúmina Sérica/química , Sitios de Unión , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Fotoquimioterapia , Hojas de la Planta/química , Espectrometría de Fluorescencia/métodos
4.
Photochem Photobiol Sci ; 13(12): 1655-60, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25190482

RESUMEN

The photophysics and photochemistry of the ß-lapachone derived diphenyldihydrodioxin 3 were investigated using steady-state and time resolved techniques. Laser excitation of 3 leads to the formation of its cation radical 4 (absorption maxima at 410 and 450 nm and a lifetime of 10 µs), which was confirmed by its thermal generation employing tris(2,4-dibromophenyl)-aminium hexachloroantimonate (BAHA) as the electron acceptor. The cation radical 4 was also formed via the triplet excited state of 3 through a triplet sensitized process using benzophenone (ET = 69 kcal mol(-1)) as the sensitizer.

5.
Photochem Photobiol Sci ; 13(2): 149-53, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24166537

RESUMEN

The rarely recognized electron donating ability of the benzophenone triplet excited state provides an unusual route for the photochemical synthesis of gold nanoparticles.

6.
Int J Biol Macromol ; 263(Pt 2): 130279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401585

RESUMEN

Despite ortho-quinones showing several biological and pharmacological activities, there is still a lack of biophysical characterization of their interaction with albumin - the main carrier of different endogenous and exogenous compounds in the bloodstream. Thus, the interactive profile between bovine serum albumin (BSA) with ß-lapachone (1) and its corresponding synthetic 3-sulfonic acid (2, under physiological pH in the sulphonate form) was performed. There is one main binding site of albumin for both ß-lapachones (n ≈ 1) and a static fluorescence quenching mechanism was proposed. The Stern-Volmer constant (KSV) values are 104 M-1, indicating a moderate binding affinity. The enthalpy (-3.41 ± 0.45 and - 8.47 ± 0.37 kJ mol-1, for BSA:1 and BSA:2, respectively) and the corresponding entropy (0.0707 ± 0.0015 and 0.0542 ± 0.0012 kJ mol-1 K-1) values indicate an enthalpically and entropically binding driven. Hydrophobic interactions and hydrogen bonding are the main binding forces. The differences in the polarity of 1 and 2 did not change significantly the affinity to albumin. In addition, the 1,2-naphthoquinones showed a similar binding trend compared with 1,4-naphthoquinones.


Asunto(s)
Naftoquinonas , Unión Proteica , Espectrometría de Fluorescencia , Sitios de Unión , Termodinámica , Albúmina Sérica Bovina/química , Dicroismo Circular
7.
J Am Chem Soc ; 134(2): 1115-23, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22145996

RESUMEN

In an effort to determine the details of the solid-state reaction mechanism and diastereoselectivity in the Norrish type II and Yang cyclization of crystalline α-adamantyl-p-methoxyacetophenone, we determined its solid-state quantum yields and transient kinetics using nanocrystalline suspensions. The transient spectroscopy measurements were complemented with solid-state NMR spectroscopy spin-lattice relaxation experiments using isotopically labeled samples and with the analysis of variable-temperature anisotropic displacement parameters from single-crystal X-ray diffraction to determine the rate of interconversion of biradical conformers by rotation of the globular adamantyl group. Our experimental findings include a solid-state quantum yield for reaction that is 3 times greater than that in solution, a Norrish type II hydrogen-transfer reaction that is about 8 times faster in crystals than in solution, and a biradical decay that occurs on the same time scale as conformational exchange, which helps to explain the diastereoselectivity observed in the solid state.

8.
Photochem Photobiol Sci ; 11(7): 1201-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22441459

RESUMEN

The influence of ring size on the photobehaviour of condensed 1,4-naphthoquinone systems, such as pyrano- and furano-derivatives (1 and 2, respectively) has been investigated. The absorption spectra for both families of naphthoquinones reveal clear differences; in the case of 2 they extend to longer wavelengths. A solvatochromic red shift in polar solvents is consistent with the π,π* character of the S(0)→ S(1) electronic transition in all cases. Theoretical (B3LYP) analysis of the HOMO and LUMO Kohn-Sham molecular orbitals of the S(0) state indicates that they are π and π* in nature, consistent with the experimental observation. A systematic study on the efficiency of singlet oxygen generation by these 1,4-naphthoquinones is presented, and values larger than 0.7 were found in every case. In accordance with these results, laser flash photolysis of deoxygenated acetonitrile solutions led to the formation of detectable triplet transient species with absorptions at 390 and 450 nm (1) and at 370 nm (2), with φ(ISC) close to 1. Additionally, the calculated energies for the T(1) states relative to the S(0) states at UB3LYP/6-311++G** are ca. 47 kcal mol(-1) for 1 and 43 kcal mol(-1) for 2. A comparison of the geometrical parameters for the S(0) and T(1) states reveals a marked difference with respect to the arrangement of the exocyclic phenyl ring whilst a comparison of electronic parameters revealed the change from a quinone structure to a di-dehydroquinone diradical structure.


Asunto(s)
Naftoquinonas/química , Oxígeno Singlete/química , Acetonitrilos/química , Rayos Láser , Naftoquinonas/efectos de la radiación , Fotólisis , Teoría Cuántica , Solventes/química
9.
Photochem Photobiol Sci ; 9(10): 1378-84, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20820670

RESUMEN

The influence of the phenolic hydroxyl group of ortho-hydroxy atorvastatin metabolite (Ato-OH) on the photochemistry of atorvastatin (Ato) has been evaluated by steady and time-resolved experiments. Direct excitation of Ato and Ato-OH led to phenanthrene-like intermediate formation, being ∼30% for Ato-OH less efficient than that for its parent compound in methanol. Both, Ato and Ato-OH are able to quench benzophenone (E(T)∼69 kcal mol(-1)) and xanthone (E(T)∼74 kcal mol(-1)) triplet excited state with rate constants close to diffusion limit control which suggest energy transfer mechanism is taking place. In fact, lower triplet energies ∼63 kcal mol(-1) and π,π* character, were confirmed by DFT calculations for both compounds. Interestingly, only Ato-OH can act as a hydrogen donor towards triplet benzil excited state (E(T)∼ 54 kcal mol(-1)) due to the presence of the phenolic hydroxyl group. Nevertheless, the presence of this group in Ato-OH does not modify to a significant degree the compound reactivity toward singlet oxygen. The importance of triplet energy transfer in biological systems to form Ato and Ato-OH triplet excited state as well as the hydrogen donor capacity of Ato-OH toward triplet excited state are discussed in the present communication.


Asunto(s)
Ácidos Heptanoicos/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Pirroles/química , Atorvastatina , Transferencia de Energía , Ácidos Heptanoicos/metabolismo , Hidrógeno/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Metanol/química , Procesos Fotoquímicos , Fotólisis , Pirroles/metabolismo , Teoría Cuántica , Oxígeno Singlete/química , Termodinámica
10.
Int J Biol Macromol ; 160: 1114-1129, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32450323

RESUMEN

The present work reports the biological assays between synthetic BF2-naphtyridine complexes and four proteins: human serum albumin (HSA), calf-thymus DNA (CT-DNA), tyrosinase and acetylcholinesterase enzymes via spectroscopic analysis at physiological conditions, combined with molecular docking simulations. The BF2-complexes presented spontaneous and moderate binding ability to HSA through the ground-state association (static fluorescence quenching mechanism). The main binding site is Sudlow's site I (subdomain IIA) and the binding does not perturb significantly both secondary and surface structure of HSA. Despite BF2-complexes showed good binding ability with HSA, these compounds presented weak intercalative ability with CT-DNA (the most conventional and simple model to preliminary studies), except in the case of 1 h, which suggested that the presence of electronic donor groups in both aromatic ring moieties of BF2-complex structure can increase the intercalative ability for DNA strands. Competitive binding displacement assays in the presence of methyl green and molecular docking calculations indicated that the studied compounds interact preferentially in the major groove of DNA. In addition, the assayed compounds presented the ability to activate or inhibit both tyrosinase (the decontrolled activity can induce melanoma carcinoma) or AChE (involved in reactions related to the function of neurotransmitters) enzymes.


Asunto(s)
Acetilcolinesterasa/química , Compuestos de Boro/química , Inhibidores de la Colinesterasa/síntesis química , Monofenol Monooxigenasa/química , Naftiridinas/química , Acetilcolinesterasa/metabolismo , Sitios de Unión , Inhibidores de la Colinesterasa/farmacología , ADN/química , ADN/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismo
11.
Photochem Photobiol ; 85(1): 153-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18673323

RESUMEN

The photochemical reactivity of beta-lapachone (1), nor-beta-lapachone (2) and 1,2-naphthoquinone (3) towards amino acids and nucleobases or nucleosides has been examined employing the nanosecond laser flash photolysis technique. Excitation (lambda = 355 nm) of degassed solutions of 1-3, in acetonitrile, resulted in the formation of their corresponding triplet excited states. These transients were efficiently quenched by l-tryptophan, l-tryptophan methyl ester, l-tyrosine, l-tyrosine methyl ester and l-cysteine (k(q) approximately 10(9) L mol(-1) s(-1)). For l-tryptophan, l-tyrosine and their methyl esters new transients were formed in the quenching process, which were assigned to the corresponding radical pair resulting from an initial electron transfer from the amino acids or their esters to the excited quinone, followed by a fast proton transfer. No measurable quenching rate constants could be observed in the presence of thymine and thymidine. On the other hand, efficient rate constants were obtained when 1-3 were quenched by 2'-deoxyguanosine (k(q) approximately 10(9) L mol(-1) s(-1)). The quantum efficiency of singlet oxygen ((1)O(2)) formation from 1 to 3 was determined employing time-resolved near-IR emission studies upon laser excitation and showed considerably high values in all cases (Phi(Delta) = 0.6), which are fully in accord with the pipi character of these triplets in acetonitrile.


Asunto(s)
Acetonitrilos/química , Naftoquinonas/química , Fármacos Fotosensibilizantes/química , Estructura Molecular , Oxígeno Singlete/química , Soluciones , Espectrofotometría
12.
RSC Adv ; 9(24): 13386-13397, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35519567

RESUMEN

The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.

13.
Int J Biol Macromol ; 112: 1062-1072, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29447969

RESUMEN

A novel series of piperonal mesoionic derivatives (PMI 1-6) was synthesized. Tyrosinase inhibition in the presence of PMI-1, -2, -3, -4, -5 and -6 as well as human serum albumin (HSA) binding studies with PMI-5 and PMI-6 were done by spectroscopic and theoretical methods. The mesoionic compound PMI-5 is the most promising tyrosinase inhibitor with a noncompetitive inhibitory mechanism and an IC50=124µmolL-1. In accordance with the kinetic profile, molecular docking results show that PMI-5 is able to interact favorably with the tyrosinase active site containing the substrate molecule, L-DOPA, interacting with Val-247, Phe-263 and Val-282 residues. The spectroscopic results for the interaction HSA:PMI-5 and HSA:PMI-6 indicated that these mesoionic compounds can associate with HSA in the ground state and energy transfer can occur with high probability. The binding was moderate, spontaneous and can perturb significantly the secondary structure of the albumin. The molecular docking results suggest that PMI-5 and PMI-6 are able to be accommodated inside the Sudlow's site I in HSA, interacting with hydrophobic and hydrophilic amino acid residues.


Asunto(s)
Compuestos de Anilina/síntesis química , Compuestos de Anilina/farmacología , Benzaldehídos/síntesis química , Benzaldehídos/farmacología , Benzodioxoles/síntesis química , Benzodioxoles/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Albúmina Sérica Humana/metabolismo , Compuestos de Anilina/química , Benzaldehídos/química , Benzodioxoles/química , Sitios de Unión , Dicroismo Circular , Transferencia de Energía , Humanos , Iones , Cinética , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Termodinámica
14.
Biomolecules ; 8(3)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142945

RESUMEN

The interaction between the main carrier of endogenous and exogenous compounds in the human bloodstream (human serum albumin, HSA) and a potential anticancer compound (the capsaicin analogue RPF101) was investigated by spectroscopic techniques (circular dichroism, steady-state, time-resolved, and synchronous fluorescence), zeta potential, and computational method (molecular docking). Steady-state and time-resolved fluorescence experiments indicated an association in the ground state between HSA:RPF101. The interaction is moderate, spontaneous (ΔG° < 0), and entropically driven (ΔS° = 0.573 ± 0.069 kJ/molK). This association does not perturb significantly the potential surface of the protein, as well as the secondary structure of the albumin and the microenvironment around tyrosine and tryptophan residues. Competitive binding studies indicated Sudlow's site I as the main protein pocket and molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces.


Asunto(s)
Capsaicina/química , Capsaicina/metabolismo , Simulación del Acoplamiento Molecular , Albúmina Sérica Humana/metabolismo , Unión Competitiva , Humanos , Unión Proteica , Conformación Proteica , Albúmina Sérica Humana/química , Análisis Espectral
15.
Photochem Photobiol ; 77(1): 10-7, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12856876

RESUMEN

The photochemistry of ninhydrin in benzene and water was studied by laser flash photolysis and electron paramagnetic resonance. Its photochemistry was shown to be dependent on the solvent. In benzene, a triplet excited state was observed, which underwent hydrogen abstraction reactions or reduction to the radical anion. In water, the radical anion of ninhydrin was formed within the laser pulse (15 ns) at neutral pH, whereas the neutral ketyl radical was formed by protonation of the radical anion at low pH. A pKa of 0.77 was determined for the protonation equilibrium. The formation of hydrindantin is proposed to occur through the dimerization of the ketyl radical or the radical anion (or both). In addition, ninhydrin was shown to be a poor precursor for the photogeneration of hydroxyl radicals.

16.
Dalton Trans ; 42(39): 14049-52, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23979588

RESUMEN

The size of photochemically-prepared niobium nanoparticles (NbNP) can be controlled by varying the concentration of the photoinitiator in the reaction mixture. The particles, which may be metallic in nature, are readily oxidized upon air exposure to form stable niobium(v) oxide nanoparticles (NbONP) that act as strong Brønsted acids.

17.
Org Lett ; 13(2): 204-7, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21142017

RESUMEN

Photoexcitation of gold nanoparticles in their plasmon transition around 530 nm provides the means to carry high-energy reactions at room temperature. In the case of dicumyl peroxide (with activation energy of 34.3 kcal/mol) the reaction occurs in less than 1 min under 532 nm laser excitation. The results suggest that the peroxide is exposed to temperatures of ~500 °C for submicrosecond times, and provides a guide as to which type of organic reactions may benefit from plasmon-mediated energy delivery.

18.
Phys Chem Chem Phys ; 10(44): 6645-52, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18989476

RESUMEN

alpha-Lapachone is a natural 1,4-naphthoquinone with promising biological activity. The fused dihydropyran ring present in its structure, acting as formal 2-alkoxy and 3-alkyl substituents to the quinone moiety, endows this compound with milder redox properties and lower toxicity, when compared with other bioactive 1,4-quinones. Its photochemistry, here reported, seems to originate from the triplet state, which shows pipi* character. Triplet quenching in acetonitrile solution with added hydrogen-atom donors such as 1,4-cyclohexadiene or 2-propanol is inefficient, independent of solvent polarity, and leads to formation of the semiquinone radical. With phenol and indole, quenching rate constants are two orders of magnitude higher, but smaller than the value for triethylamine. In the first two cases the semiquinone radical can be detected by laser flash photolysis and in the last case, the anion radical derived from alpha-lapachone is readily detected. The semiquinone radical can also be observed in the quenching of triplet alpha-lapachone by 2'-deoxyguanosine and by the methyl esters of L-tryptophan and L-tyrosine, whereas for L-cysteine methyl ester the quenching rate constant is very slow. Triplet alpha-lapachone is not quenched by thymine, thymidine, 2'-deoxycytosine or 2'-deoxyadenosine; this is probably due to its pipi* character and low energy, which prevents oxetane formation and triplet-triplet energy transfer, respectively. Steady-state photolysis of aerated solutions of these compounds in the presence of alpha-lapachone does not show evidence of decomposition, whereas similar experiments with 2'-deoxyguanosine result in efficient consumption of the nucleoside. Singlet oxygen is formed from triplet alpha-lapachone, and a quantum yield of 0.68 is measured.


Asunto(s)
Naftoquinonas/química , Naftoquinonas/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Aminoácidos/metabolismo , Nucleósidos/metabolismo , Fotoquímica , Fotólisis , Oxígeno Singlete/metabolismo
19.
Photochem Photobiol Sci ; 7(4): 467-73, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18385890

RESUMEN

The photochemical reactivity of beta-lapachone (1), nor-beta-lapachone (2) and beta-lapachone 3-sulfonic acid (3) has been examined by laser flash photolysis. Excitation (lambda = 266 nm) of degassed solutions of , in acetonitrile or dichloromethane, resulted in the formation of detectable transients with absorption maxima at 300, 380 and 650 nm. These transients, with lifetimes of 5.0 micros, were quenched by beta-carotene at a diffusion-controlled rate constant and assigned to the triplet excited states of 1-3. Addition of hydrogen donors, such as 2-propanol, 1,4-cyclohexadiene, 4-methoxyphenol or indole led to the formation of new transients, which were assigned to the corresponding ketyl radicals obtained from the hydrogen abstraction reaction by the triplets 1-3 . In the presence of triethylamine it was observed the formation of the long-lived anion radical derived from , which shows absorption maxima at 300 and 380 nm. The low values observed for the hydrogen abstraction rate constants for the beta-lapachones 1-3 using 2-propanol and 1,4-cyclohexadiene as quenchers led us to conclude that their triplet excited states show pi pi* character.


Asunto(s)
Rayos Láser , Naftoquinonas/química , Fotólisis/efectos de la radiación , Datos de Secuencia Molecular , Espectrofotometría
20.
Photochem Photobiol Sci ; 1(4): 278-82, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12661968

RESUMEN

The rate constants for the quenching of indane-1,2,3-trione (1) and 5-methoxyindane-1,2,3-trione (2) triplets by olefins, in degassed benzene solution, have been measured by laser flash photolysis. The alkenes studied included acyclic, cyclic, isolated and conjugated dienes, and enol ethers. No quenching was observed when irradiation was performed in the presence of olefins substituted with electron-accepting groups such as maleic anhydride, dimethyl fumarate, dimethyl maleate or chalcone. The plots of log kq versus the ionization potential for cyclohexene, 2-methylbut-1-ene, 2-methylbut-2-ene, 2,3-dimethylbut-2-ene, trans-penta-1,3-diene, ethyl vinyl ether and ethyl prop-1-en-1-yl ether are linear with a slope of -2.7/eV (r = 0.98) for 1 and -2.6/eV (r = 0.95) for 2. The magnitude of the slope is in agreement with a mechanism involving a partial charge transfer complex, which then leads to product formation. A comparison of the reactivity of 1 and 2 toward olefins shows that a similar mechanism operates for the quenching processes of these two triketones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA