Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338310

RESUMEN

Lipoprotein X (LP-X) is an abnormal cholesterol-rich lipoprotein particle that accumulates in patients with cholestatic liver disease and familial lecithin-cholesterol acyltransferase deficiency (FLD). Because there are no high-throughput diagnostic tests for its detection, a proton nuclear magnetic resonance (NMR) spectroscopy-based method was developed for use on a clinical NMR analyzer commonly used for the quantification of lipoproteins and other cardiovascular biomarkers. The LP-X assay was linear from 89 to 1615 mg/dL (cholesterol units) and had a functional sensitivity of 44 mg/dL. The intra-assay coefficient of variation (CV) varied between 1.8 and 11.8%, depending on the value of LP-X, whereas the inter-assay CV varied between 1.5 and 15.4%. The assay showed no interference with bilirubin levels up to 317 mg/dL and was also unaffected by hemolysis for hemoglobin values up to 216 mg/dL. Samples were stable when stored for up to 6 days at 4 °C but were not stable when frozen. In a large general population cohort (n = 277,000), LP-X was detected in only 50 subjects. The majority of LP-X positive cases had liver disease (64%), and in seven cases, had genetic FLD (14%). In summary, we describe a new NMR-based assay for LP-X, which can be readily implemented for routine clinical laboratory testing.


Asunto(s)
Colestasis , Hepatopatías , Humanos , Lipoproteína X , Colestasis/diagnóstico , Colesterol , Espectroscopía de Resonancia Magnética
2.
J Lipid Res ; 63(1): 100160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902367

RESUMEN

A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.


Asunto(s)
Proteínas de Microfilamentos , Proteínas Musculares
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232786

RESUMEN

ApoB-100 is a member of a large lipid transfer protein superfamily and is one of the main apolipoproteins found on low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) particles. Despite its clinical significance for the development of cardiovascular disease, there is limited information on apoB-100 structure. We have developed a novel method based on the "divide and conquer" algorithm, using PSIPRED software, by dividing apoB-100 into five subunits and 11 domains. Models of each domain were prepared using I-TASSER, DEMO, RoseTTAFold, Phyre2, and MODELLER. Subsequently, we used disuccinimidyl sulfoxide (DSSO), a new mass spectrometry cleavable cross-linker, and the known position of disulfide bonds to experimentally validate each model. We obtained 65 unique DSSO cross-links, of which 87.5% were within a 26 Å threshold in the final model. We also evaluated the positions of cysteine residues involved in the eight known disulfide bonds in apoB-100, and each pair was measured within the expected 5.6 Å constraint. Finally, multiple domains were combined by applying constraints based on detected long-range DSSO cross-links to generate five subunits, which were subsequently merged to achieve an uninterrupted architecture for apoB-100 around a lipoprotein particle. Moreover, the dynamics of apoB-100 during particle size transitions was examined by comparing VLDL and LDL computational models and using experimental cross-linking data. In addition, the proposed model of receptor ligand binding of apoB-100 provides new insights into some of its functions.


Asunto(s)
Apolipoproteínas B , Cisteína , Apolipoproteína B-100 , Apolipoproteínas B/metabolismo , Simulación por Computador , Disulfuros , Ligandos , Lipoproteínas LDL/química , Lipoproteínas VLDL , Modelos Estructurales , Sulfóxidos
4.
J Lipid Res ; 60(5): 1050-1057, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30808683

RESUMEN

Familial LCAT deficiency (FLD) patients accumulate lipoprotein-X (LP-X), an abnormal nephrotoxic lipoprotein enriched in free cholesterol (FC). The low neutral lipid content of LP-X limits the ability to detect it after separation by lipoprotein electrophoresis and staining with Sudan Black or other neutral lipid stains. A sensitive and accurate method for quantitating LP-X would be useful to examine the relationship between plasma LP-X and renal disease progression in FLD patients and could also serve as a biomarker for monitoring recombinant human LCAT (rhLCAT) therapy. Plasma lipoproteins were separated by agarose gel electrophoresis and cathodal migrating bands corresponding to LP-X were quantified after staining with filipin, which fluoresces with FC, but not with neutral lipids. rhLCAT was incubated with FLD plasma and lipoproteins and LP-X changes were analyzed by agarose gel electrophoresis. Filipin detects synthetic LP-X quantitatively (linearity 20-200 mg/dl FC; coefficient of variation <20%) and sensitively (lower limit of quantitation <1 mg/ml FC), enabling LP-X detection in FLD, cholestatic, and even fish-eye disease patients. rhLCAT incubation with FLD plasma ex vivo reduced LP-X dose dependently, generated HDL, and decreased lipoprotein FC content. Filipin staining after agarose gel electrophoresis sensitively detects LP-X in human plasma and accurately quantifies LP-X reduction after rhLCAT incubation ex vivo.


Asunto(s)
Filipina/química , Deficiencia de la Lecitina Colesterol Aciltransferasa/tratamiento farmacológico , Lipoproteína X/sangre , Lipoproteínas/sangre , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Biomarcadores/sangre , Geles/química , Humanos , Deficiencia de la Lecitina Colesterol Aciltransferasa/sangre , Deficiencia de la Lecitina Colesterol Aciltransferasa/enzimología , Lipoproteína X/síntesis química , Lipoproteína X/química , Proteínas Recombinantes/sangre
5.
J Pharmacol Exp Ther ; 368(3): 423-434, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30563940

RESUMEN

Familial LCAT deficiency (FLD) is due to mutations in lecithin:cholesterol acyltransferase (LCAT), a plasma enzyme that esterifies cholesterol on lipoproteins. FLD is associated with markedly reduced levels of plasma high-density lipoprotein and cholesteryl ester and the formation of a nephrotoxic lipoprotein called LpX. We used a mouse model in which the LCAT gene is deleted and a truncated version of the SREBP1a gene is expressed in the liver under the control of a protein-rich/carbohydrate-low (PRCL) diet-regulated PEPCK promoter. This mouse was found to form abundant amounts of LpX in the plasma and was used to determine whether treatment with recombinant human LCAT (rhLCAT) could prevent LpX formation and renal injury. After 9 days on the PRCL diet, plasma total and free cholesterol, as well as phospholipids, increased 6.1 ± 0.6-, 9.6 ± 0.9-, and 6.7 ± 0.7-fold, respectively, and liver cholesterol and triglyceride concentrations increased 1.7 ± 0.4- and 2.8 ±0.9-fold, respectively, compared with chow-fed animals. Transmission electron microscopy revealed robust accumulation of lipid droplets in hepatocytes and the appearance of multilamellar LpX particles in liver sinusoids and bile canaliculi. In the kidney, LpX was found in glomerular endothelial cells, podocytes, the glomerular basement membrane, and the mesangium. The urine albumin/creatinine ratio increased 30-fold on the PRCL diet compared with chow-fed controls. Treatment of these mice with intravenous rhLCAT restored the normal lipoprotein profile, eliminated LpX in plasma and kidneys, and markedly decreased proteinuria. The combined results suggest that rhLCAT infusion could be an effective therapy for the prevention of renal disease in patients with FLD.


Asunto(s)
Modelos Animales de Enfermedad , Riñón/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/tratamiento farmacológico , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Lipoproteína X/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/administración & dosificación , Animales , Dieta Baja en Carbohidratos/efectos adversos , Proteínas en la Dieta/efectos adversos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Lipoproteína X/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
6.
Chembiochem ; 15(14): 2087-96, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25154602

RESUMEN

We report a synthetic route to BODIPY-cholesterol conjugates in which the key steps were Suzuki or Liebeskind-Srogl cross-coupling of cholesterol phenyl moieties with structurally diverse BODIPY scaffolds. All conjugates feature single-bonded and hydrophobic linkages between the fluorophore and sterol that are devoid of heteroatoms. Using HeLa cells, we show that these BODIPY-cholesterol analogues can be used simultaneously with the parent BODIPY-cholesterol for cell imaging and flow cytometry. The BODIPY-cholesterol analogues exhibit similar cellular localization in HeLa cells and show similar cholesterol efflux properties from THP-1 cells to HDL acceptors. These results demonstrate that the red-shifted BODIPY-cholesterol analogues behave in a manner similar to unlabeled cholesterol and are useful probes for simultaneous visualization of intracellular cholesterol pools and for monitoring cholesterol efflux from cells to extracellular acceptors.


Asunto(s)
Compuestos de Boro/análisis , Colesterol/análisis , Colorantes Fluorescentes/análisis , Colesterol/análogos & derivados , Citometría de Flujo , Células HeLa , Humanos , Imagen Óptica
7.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37471145

RESUMEN

BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Lipoproteínas HDL , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Apolipoproteína A-I , HDL-Colesterol , Fosfolípidos
8.
Biology (Basel) ; 11(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36009874

RESUMEN

Lipoprotein-X (LpX) are abnormal nephrotoxic lipoprotein particles enriched in free cholesterol and phospholipids. LpX with distinctive lipid compositions are formed in patients afflicted with either familial LCAT deficiency (FLD) or biliary cholestasis. LpX is difficult to detect by standard lipid stains due to the absence of a neutral lipid core and because it is unstable upon storage, particularly when frozen. We have recently reported that free cholesterol-specific filipin staining after agarose gel electrophoresis sensitively detects LpX in fresh human plasma. Herein, we describe an even more simplified qualitative method to detect LpX in both fresh and frozen-thawed human FLD or cholestatic plasma. Fluorescent cholesterol complexed to fatty-acid-free BSA was used to label LpX and was added together with trehalose in order to cryopreserve plasma LpX. The fluorescent cholesterol bound to LpX was observed with high sensitivity after separation from other lipoproteins by agarose gel electrophoresis. This methodology can be readily developed into a simple assay for the clinical diagnosis of FLD and biliary liver disease and to monitor the efficacy of treatments intended to reduce plasma LpX in these disease states.

9.
Pharmacol Res Perspect ; 8(1): e00554, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31893124

RESUMEN

Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease characterized by low HDL-C levels, low plasma cholesterol esterification, and the formation of Lipoprotein-X (Lp-X), an abnormal cholesterol-rich lipoprotein particle. LCAT deficiency causes corneal opacities, normochromic normocytic anemia, and progressive renal disease due to Lp-X deposition in the glomeruli. Recombinant LCAT is being investigated as a potential therapy for this disorder. Several hepatic disorders, namely primary biliary cirrhosis, primary sclerosing cholangitis, cholestatic liver disease, and chronic alcoholism also develop Lp-X, which may contribute to the complications of these disorders. We aimed to test the hypothesis that an increase in plasma LCAT could prevent the formation of Lp-X in other diseases besides FLD. We generated a murine model of intrahepatic cholestasis in LCAT-deficient (KO), wild type (WT), and LCAT-transgenic (Tg) mice by gavaging mice with alpha-naphthylisothiocyanate (ANIT), a drug well known to induce intrahepatic cholestasis. Three days after the treatment, all mice developed hyperbilirubinemia and elevated liver function markers (ALT, AST, Alkaline Phosphatase). The presence of high levels of LCAT in the LCAT-Tg mice, however, prevented the formation of Lp-X and other plasma lipid abnormalities in WT and LCAT-KO mice. In addition, we demonstrated that multiple injections of recombinant human LCAT can prevent significant accumulation of Lp-X after ANIT treatment in WT mice. In summary, LCAT can protect against the formation of Lp-X in a murine model of cholestasis and thus recombinant LCAT could be a potential therapy to prevent the formation of Lp-X in other diseases besides FLD.


Asunto(s)
1-Naftilisotiocianato/efectos adversos , Colestasis Intrahepática/tratamiento farmacológico , Lipoproteína X/sangre , Fosfatidilcolina-Esterol O-Aciltransferasa/uso terapéutico , Animales , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Lipoproteína X/efectos de los fármacos , Ratones , Ratones Transgénicos , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/farmacología
10.
Biology (Basel) ; 8(3)2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336888

RESUMEN

We describe simple, sensitive and robust methods to monitor lipoprotein remodeling and cholesterol and apolipoprotein exchange, using fluorescent Lissamine Rhodamine B head-group tagged phosphatidylethanolamine (*PE) as a lipoprotein reference marker. Fluorescent Bodipy cholesterol (*Chol) and *PE directly incorporated into whole plasma lipoproteins in proportion to lipoprotein cholesterol and phospholipid mass, respectively. *Chol, but not *PE, passively exchanged between isolated plasma lipoproteins. Fluorescent apoA-I (*apoA-I) specifically bound to high-density lipoprotein (HDL) and remodeled *PE- and *Chol-labeled synthetic lipoprotein-X multilamellar vesicles (MLV) into a pre-ß HDL-like particle containing *PE, *Chol, and *apoA-I. Fluorescent MLV-derived *PE specifically incorporated into plasma HDL, whereas MLV-derived *Chol incorporation into plasma lipoproteins was similar to direct *Chol incorporation, consistent with apoA-I-mediated remodeling of fluorescent MLV to HDL with concomitant exchange of *Chol between lipoproteins. Based on these findings, we developed a model system to study lipid transfer by depositing fluorescent *PE and *Chol-labeled on calcium silicate hydrate crystals, forming dense lipid-coated donor particles that are readily separated from acceptor lipoprotein particles by low-speed centrifugation. Transfer of *PE from donor particles to mouse plasma lipoproteins was shown to be HDL-specific and apoA-I-dependent. Transfer of donor particle *PE and *Chol to HDL in whole human plasma was highly correlated. Taken together, these studies suggest that cell-free *PE efflux monitors apoA-I functionality.

11.
Sci Rep ; 9(1): 3597, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837651

RESUMEN

Regulation of lipid absorption by enterocytes can influence metabolic status in humans and contribute to obesity and related complications. The intracellular steps of chylomicron biogenesis and transport from the Endoplasmic Reticulum (ER) to the Golgi complex have been described, but the mechanisms for post-Golgi transport and secretion of chylomicrons have not been identified. Using a newly generated Dennd5b-/- mouse, we demonstrate an essential role for this gene in Golgi to plasma membrane transport of chylomicron secretory vesicles. In mice, loss of Dennd5b results in resistance to western diet induced obesity, changes in plasma lipids, and reduced aortic atherosclerosis. In humans, two independent exome sequencing studies reveal that a common DENND5B variant, p.(R52K), is correlated with body mass index. These studies establish an important role for DENND5B in post-Golgi chylomicron secretion and a subsequent influence on body composition and peripheral lipoprotein metabolism.


Asunto(s)
Índice de Masa Corporal , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Absorción Intestinal , Obesidad/prevención & control , Triglicéridos/metabolismo , Animales , Transporte Biológico , Dieta Alta en Grasa/efectos adversos , Femenino , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo
12.
Ann Clin Biochem ; 55(4): 414-421, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28882064

RESUMEN

Background Lecithin:cholesterol acyltransferase (LCAT) is a plasma enzyme that esterifies cholesterol. Recombinant human LCAT (rhLCAT) is now being developed as an enzyme replacement therapy for familial LCAT deficiency and as a possible treatment for acute coronary syndrome. The current 'gold standard' assay for LCAT activity involves the use of radioisotopes, thus making it difficult for routine clinical use. Methods We have developed a novel and more convenient LCAT activity assay using fluorescence-labelled cholesterol (BODIPY-cholesterol), which is incorporated into proteoliposomes as a substrate instead of radiolabelled cholesterol. Results The apparent Km and Vmax were 31.5 µmol/L and 55.8 nmol/h/nmoL, rhLCAT, respectively, for the 3H-cholesterol method and 103.1 µmol/L and 13.4 nmol/h/nmol rhLCAT, respectively, for the BODIPY-cholesterol method. Although the two assays differed in their absolute units of LCAT activity, there was a good correlation between the two test assays ( r = 0.849, P < 1.6 × 10-7, y = 0.1378x + 1.106). The BODIPY-cholesterol assay had an intra-assay CV of 13.7%, which was superior to the intra-assay CV of 20.8% for the radioisotopic assay. The proteoliposome substrate made with BODIPY-cholesterol was stable to storage for at least 10 months. The reference range ( n = 20) for the fluorescent LCAT activity assay was 4.6-24.1 U/mL/h in healthy subjects. Conclusions In summary, a novel fluorescent LCAT activity assay that utilizes BODIPY-cholesterol as a substrate is described that yields comparable results to the radioisotopic method.


Asunto(s)
Compuestos de Boro/química , Colesterol/química , Cromatografía en Capa Delgada/métodos , Pruebas de Química Clínica/métodos , Colorantes Fluorescentes/química , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Adulto , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Fosfatidilcolina-Esterol O-Aciltransferasa/normas , Proteolípidos , Estándares de Referencia , Reproducibilidad de los Resultados
13.
Sci Rep ; 8(1): 2956, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440748

RESUMEN

Peptides mimicking the major protein of highdensity lipoprotein (HDL), apolipoprotein A-I (apoA-I), are promising therapeutics for cardiovascular diseases. Similar to apoA-I, their atheroprotective property is attributed to their ability to form discoidal HDL-like particles by extracting cellular cholesterol and phospholipids from lipid microdomains created by the ABCA1 transporter in a process called cholesterol efflux. The structural features of peptides that enable cholesterol efflux are not well understood. Herein, four synthetic amphipathic peptides denoted ELK, which only contain Glu, Leu, Lys, and sometimes Ala, and which have a wide range of net charges and hydrophobicities, were examined for cholesterol efflux. Experiments show that ELKs with a net neutral charge and a hydrophobic face that subtends an angle of at least 140° are optimal for cholesterol efflux. All-atom molecular dynamics simulations show that peptides that are effective in promoting cholesterol efflux stabilize HDL nanodiscs formed by these peptides by the orderly covering of the hydrophobic acyl chains on the edge of the disc. In contrast to apoA-I, which forms an anti-parallel double belt around the HDL, active peptides assemble in a mostly anti-parallel "picket fence" arrangement. These results shed light on the efflux ability of apoA-I mimetics and inform the future design of such therapeutics.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteína A-I/química , Colesterol/metabolismo , Peptidomiméticos/química , Peptidomiméticos/farmacología , Secuencia de Aminoácidos , Transporte Biológico/efectos de los fármacos , Simulación de Dinámica Molecular , Fosfolípidos/metabolismo , Conformación Proteica
14.
J Clin Invest ; 112(3): 367-78, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897204

RESUMEN

Hepatic lipase (HL) has a well-established role in lipoprotein metabolism. However, its role in atherosclerosis is poorly understood. Here we demonstrate that HL deficiency raises the proatherogenic apoB-containing lipoprotein levels in plasma but reduces atherosclerosis in lecithin cholesterol acyltransferase (LCAT) transgenic (Tg) mice, similar to results previously observed with HL-deficient apoE-KO mice. These findings suggest that HL has functions that modify atherogenic risk that are separate from its role in lipoprotein metabolism. We used bone marrow transplantation (BMT) to generate apoE-KO and apoE-KO x HL-KO mice, as well as LCAT-Tg and LCAT-Tg x HL-KO mice, chimeric for macrophage HL gene expression. Using in situ RNA hybridization, we demonstrated localized production of HL by donor macrophages in the artery wall. We found that expression of HL by macrophages enhances early aortic lesion formation in both apoE-KO and LCAT-Tg mice, without changing the plasma lipid profile, lipoprotein lipid composition, or HL and lipoprotein lipase activities. HL does, however, enhance oxidized LDL uptake by peritoneal macrophages. These combined data demonstrate that macrophage-derived HL significantly contributes to early aortic lesion formation in two independent mouse models and identify a novel mechanism, separable from the role of HL in plasma lipoprotein metabolism, by which HL modulates atherogenic risk in vivo.


Asunto(s)
Apolipoproteínas E/deficiencia , Arteriosclerosis/etiología , Lipasa/fisiología , Macrófagos Peritoneales/enzimología , Fosfatidilcolina-Esterol O-Aciltransferasa/fisiología , Animales , Apolipoproteínas E/genética , Arteriosclerosis/genética , Arteriosclerosis/fisiopatología , Trasplante de Médula Ósea , Femenino , Expresión Génica , Lipasa/deficiencia , Lipasa/genética , Lípidos/sangre , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo
15.
PLoS One ; 11(2): e0150083, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26919698

RESUMEN

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Asunto(s)
Glomérulos Renales/efectos de los fármacos , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Lipoproteína X/toxicidad , Proteinuria/etiología , Animales , Apolipoproteína A-I/metabolismo , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Membrana Basal Glomerular/efectos de los fármacos , Membrana Basal Glomerular/patología , Mesangio Glomerular/citología , Mesangio Glomerular/metabolismo , Mesangio Glomerular/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-6/metabolismo , Glomérulos Renales/patología , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Lipoproteína X/metabolismo , Lipoproteína X/farmacocinética , Lipoproteínas HDL/metabolismo , Lisosomas/metabolismo , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfolipasas A2/metabolismo , Pinocitosis , Podocitos/metabolismo , Podocitos/patología , Proteinuria/inducido químicamente , Proteinuria/genética , Proteinuria/patología
16.
Arterioscler Thromb Vasc Biol ; 24(10): 1755-60, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15319263

RESUMEN

High-density lipoproteins (HDL) protect against cardiovascular disease. HDL removes and transports excess cholesterol from peripheral cells to the liver for removal from the body. HDL also protects low-density lipoproteins (LDL) from oxidation and inhibits expression of adhesion molecules in endothelial cells, preventing monocyte movement into the vessel wall. The ABCA1 transporter regulates intracellular cholesterol levels in the liver and in peripheral cells by effluxing excess cholesterol to lipid-poor apoA-I to form nascent HDL, which is converted to mature alpha-HDL by esterification of cholesterol to cholesteryl esters (CE) by lecithin cholesterol acyltransferase. The hepatic ABCA1 transporter and apoA-I are major determinants of levels of plasma alpha-HDL cholesterol as well as poorly lipidated apoA-I, which interact with ABCA1 transporters on peripheral cells in the process of reverse cholesterol transport. Cholesterol in HDL is transported directly back to the liver by HDL or after transfer of CE by the cholesteryl ester transfer protein (CETP) by the apoB lipoproteins. Current approaches to increasing HDL to determine the efficacy of HDL in reducing atherosclerosis involve acute HDL therapy with infusions of apoA-I or apoA-I mimetic peptides and chronic long-term therapy with selective agents to increase HDL, including CETP inhibitors.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Enfermedades Cardiovasculares/tratamiento farmacológico , Lipoproteínas HDL/sangre , Lipoproteínas HDL/uso terapéutico , Transportador 1 de Casete de Unión a ATP , Animales , Humanos
17.
J Histochem Cytochem ; 63(1): 8-21, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25362141

RESUMEN

Using the intrinsic optical properties of collagen and elastin, two-photon microscopy was applied to evaluate the three-dimensional (3D) macromolecular structural development of the mouse thoracic aorta from birth to 60 days old. Baseline development was established in the Scavenger Receptor Class B Type I-Deficient, Hypomorphic Apolipoprotein ER61 (SR-BI KO/ApoeR61(h/h)) mouse in preparation for modeling atherosclerosis. Precise dissection enabled direct observation of the artery wall in situ. En-face, optical sectioning of the aorta provided a novel assessment of the macromolecular structural development. During aortic development, the undulating lamellar elastin layers compressed consistent with the increases in mean aortic pressure with age. In parallel, a net increase in overall wall thickness (p<0.05, in day 60 compared with day 1 mice) occurred with age whereas the ratio of the tunicas adventitia and media to full aortic thickness remained nearly constant across age groups (~1:2.6, respectively). Histochemical analyses by brightfield microscopy and ultrastructure validated structural proteins and lipid deposition findings derived from two-photon microscopy. Development was associated with decreased decorin but not biglycan proteoglycan expression. This non-destructive 3D in situ approach revealed the aortic wall microstructure development. Coupling this approach with the intrinsic optical properties of the macromolecules may provide unique vascular wall 3D structure in many pathological conditions, including aortic atherosclerosis, dissections and aneurysms.


Asunto(s)
Aorta Torácica/crecimiento & desarrollo , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Aorta Torácica/citología , Aorta Torácica/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Antígenos CD36/deficiencia , Antígenos CD36/genética , Técnicas de Inactivación de Genes , Imagenología Tridimensional , Ratones
18.
J Biomech ; 47(7): 1594-602, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24703300

RESUMEN

The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter׳s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution; depending on the diverter׳s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter׳s effect on the wall shear stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.


Asunto(s)
Aorta Abdominal/fisiología , Aterosclerosis/fisiopatología , Modelos Cardiovasculares , Arteria Renal/fisiología , Velocidad del Flujo Sanguíneo , Simulación por Computador , Hemodinámica , Humanos , Hidrodinámica , Flujo Pulsátil , Estrés Mecánico
19.
Atherosclerosis ; 233(1): 113-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24529131

RESUMEN

OBJECTIVE: Subendothelial LDL retention by intimal matrix proteoglycans is an initial step in atherosclerosis and calcific aortic valve disease. Herein, we identify decorin and biglycan as the proteoglycans that preferentially retain LDL in intimal matrix at disease-prone sites in normal valve and vessel wall. METHODS: The porcine aortic valve and renal artery ostial diverter, initiation sites of calcific valve disease and renal atherosclerosis, respectively, from normal non-diseased animals were used as models in these studies. RESULTS: Fluorescent human LDL was selectively retained on the lesion-prone collagen/proteoglycan-enriched aortic surface of the valve, where the elastic lamina is depleted, as previously observed in lesion-prone sites in the renal ostium. iTRAQ mass spectrometry of valve and diverter protein extracts identified decorin and biglycan as the major subendothelial intimal matrix proteoglycans electrostatically retained on human LDL affinity columns. Decorin levels correlated with LDL binding in lesion-prone sites in both tissues. Collagen binding to LDL was shown to be proteoglycan-mediated. All known basement membrane proteoglycans bound LDL suggesting they may modulate LDL uptake into the subendothelial matrix. The association of purified decorin with human LDL in an in vitro microassay was blocked by serum albumin and heparin suggesting anti-atherogenic roles for these proteins in vivo. CONCLUSIONS: LDL electrostatic interactions with decorin and biglycan in the valve leaflets and vascular wall is a major source of LDL retention. The complementary electrostatic sites on LDL or these proteoglycans may provide a novel therapeutic target for preventing one of the earliest events in these cardiovascular diseases.


Asunto(s)
Válvula Aórtica/metabolismo , Biglicano/metabolismo , Decorina/metabolismo , Lipoproteínas LDL/metabolismo , Túnica Íntima/metabolismo , Animales , Aterosclerosis/metabolismo , Calcinosis/etiología , Cardiomiopatías/metabolismo , Humanos , Proteómica , Electricidad Estática , Porcinos
20.
Biology (Basel) ; 3(4): 781-800, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25405320

RESUMEN

We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA