Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 134(1): 48-61, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614010

RESUMEN

A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.


Asunto(s)
Eritrocitos/citología , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Adhesión Celular , Forma de la Célula , Membrana Eritrocítica/química , Humanos , Plasmodium falciparum/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Virulencia
2.
Nature ; 542(7639): 101-104, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28117441

RESUMEN

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.


Asunto(s)
Evolución Molecular , Genoma/genética , Malaria/parasitología , Plasmodium malariae/genética , Plasmodium ovale/genética , Animales , Eritrocitos/parasitología , Femenino , Genómica , Humanos , Pan troglodytes/parasitología , Filogenia
3.
PLoS Pathog ; 16(8): e1008717, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32745123

RESUMEN

Hepatocystis is a genus of single-celled parasites infecting, amongst other hosts, monkeys, bats and squirrels. Although thought to have descended from malaria parasites (Plasmodium spp.), Hepatocystis spp. are thought not to undergo replication in the blood-the part of the Plasmodium life cycle which causes the symptoms of malaria. Furthermore, Hepatocystis is transmitted by biting midges, not mosquitoes. Comparative genomics of Hepatocystis and Plasmodium species therefore presents an opportunity to better understand some of the most important aspects of malaria parasite biology. We were able to generate a draft genome for Hepatocystis sp. using DNA sequencing reads from the blood of a naturally infected red colobus monkey. We provide robust phylogenetic support for Hepatocystis sp. as a sister group to Plasmodium parasites infecting rodents. We show transcriptomic support for a lack of replication in the blood and genomic support for a complete loss of a family of genes involved in red blood cell invasion. Our analyses highlight the rapid evolution of genes involved in parasite vector stages, revealing genes that may be critical for interactions between malaria parasites and mosquitoes.


Asunto(s)
Apicomplexa/genética , Sangre/parasitología , Colobus/parasitología , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Plasmodium/genética , Infecciones Protozoarias en Animales/parasitología , Animales , Apicomplexa/clasificación , Apicomplexa/fisiología , Genoma de Protozoos , Malaria/sangre , Malaria/parasitología , Enfermedades de los Monos/sangre , Filogenia , Plasmodium/clasificación , Plasmodium/fisiología , Infecciones Protozoarias en Animales/sangre , Transcriptoma
4.
Genome Res ; 28(4): 547-560, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29500236

RESUMEN

Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.


Asunto(s)
Malaria Aviar/genética , Plasmodium falciparum/genética , Plasmodium vivax/genética , Plasmodium/genética , Animales , Aves/parasitología , Evolución Molecular , Humanos , Malaria Aviar/parasitología , Mamíferos/parasitología , Filogenia , Plasmodium/patogenicidad , Plasmodium falciparum/patogenicidad , Plasmodium vivax/patogenicidad
5.
BMC Med ; 17(1): 60, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30862316

RESUMEN

BACKGROUND: There are over 200 million reported cases of malaria each year, and most children living in endemic areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these modifications are observable in the absence of detectable parasitaemia. METHODS: We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had been under active surveillance for malaria for 8 years. Children were categorised into two groups depending on the cumulative number of episodes experienced: high (≥ 8) or low (< 5). RESULTS: We observe that multiple episodes of malaria are associated with modification of the immune system. Children who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and CD8+ T cells. CONCLUSION: Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of malaria are associated with modification of the immune system in children. Such immune modifications may have implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.


Asunto(s)
Enfermedades del Sistema Inmune/inmunología , Malaria/inmunología , Niño , Preescolar , Humanos
6.
Emerg Infect Dis ; 23(8): 1300-1307, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28430103

RESUMEN

Plasmodium malariae is the only human malaria parasite species with a 72-hour intraerythrocytic cycle and the ability to persist in the host for life. We present a case of a P. malariae infection with clinical recrudescence after directly observed administration of artemether/lumefantrine. By using whole-genome sequencing, we show that the initial infection was polyclonal and the recrudescent isolate was a single clone present at low density in the initial infection. Haplotypic analysis of the clones in the initial infection revealed that they were all closely related and were presumably recombinant progeny originating from the same infective mosquito bite. We review possible explanations for the P. malariae treatment failure and conclude that a 3-day artemether/lumefantrine regimen is suboptimal for this species because of its long asexual life cycle.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium malariae , Adulto , Combinación Arteméter y Lumefantrina , Combinación de Medicamentos , Resistencia a Medicamentos , Humanos , Hidroxicloroquina/uso terapéutico , Masculino , Plasmodium malariae/genética , Primaquina/uso terapéutico , Recurrencia
7.
Malar J ; 15(1): 597, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27998271

RESUMEN

BACKGROUND: Translating genomic technologies into healthcare applications for the malaria parasite Plasmodium falciparum has been limited by the technical and logistical difficulties of obtaining high quality clinical samples from the field. Sampling by dried blood spot (DBS) finger-pricks can be performed safely and efficiently with minimal resource and storage requirements compared with venous blood (VB). Here, the use of selective whole genome amplification (sWGA) to sequence the P. falciparum genome from clinical DBS samples was evaluated, and the results compared with current methods that use leucodepleted VB. METHODS: Parasite DNA with high (>95%) human DNA contamination was selectively amplified by Phi29 polymerase using short oligonucleotide probes of 8-12 mers as primers. These primers were selected on the basis of their differential frequency of binding the desired (P. falciparum DNA) and contaminating (human) genomes. RESULTS: Using sWGA method, clinical samples from 156 malaria patients, including 120 paired samples for head-to-head comparison of DBS and leucodepleted VB were sequenced. Greater than 18-fold enrichment of P. falciparum DNA was achieved from DBS extracts. The parasitaemia threshold to achieve >5× coverage for 50% of the genome was 0.03% (40 parasites per 200 white blood cells). Over 99% SNP concordance between VB and DBS samples was achieved after excluding missing calls. CONCLUSION: The sWGA methods described here provide a reliable and scalable way of generating P. falciparum genome sequence data from DBS samples. The current data indicate that it will be possible to get good quality sequence on most if not all drug resistance loci from the majority of symptomatic malaria patients. This technique overcomes a major limiting factor in P. falciparum genome sequencing from field samples, and paves the way for large-scale epidemiological applications.


Asunto(s)
Sangre/parasitología , Desecación , Genoma de Protozoos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Análisis de Secuencia de ADN , Manejo de Especímenes/métodos , Cartilla de ADN/genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Humanos , Plasmodium falciparum/aislamiento & purificación
8.
Nat Genet ; 39(1): 120-5, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159978

RESUMEN

Infections with the malaria parasite Plasmodium falciparum result in more than 1 million deaths each year worldwide. Deciphering the evolutionary history and genetic variation of P. falciparum is critical for understanding the evolution of drug resistance, identifying potential vaccine candidates and appreciating the effect of parasite variation on prevalence and severity of malaria in humans. Most studies of natural variation in P. falciparum have been either in depth over small genomic regions (up to the size of a small chromosome) or genome wide but only at low resolution. In an effort to complement these studies with genome-wide data, we undertook shotgun sequencing of a Ghanaian clinical isolate (with fivefold coverage), the IT laboratory isolate (with onefold coverage) and the chimpanzee parasite P. reichenowi (with twofold coverage). We compared these sequences with the fully sequenced P. falciparum 3D7 isolate genome. We describe the most salient features of P. falciparum polymorphism and adaptive evolution with relation to gene function, transcript and protein expression and cellular localization. This analysis uncovers the primary evolutionary changes that have occurred since the P. falciparum-P. reichenowi speciation and changes that are occurring within P. falciparum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma de Protozoos , Plasmodium falciparum/genética , Animales , Femenino , Especiación Genética , Ghana , Humanos , Malaria Falciparum/parasitología , Sistemas de Lectura Abierta , Pan troglodytes , Plasmodium/genética , Polimorfismo de Nucleótido Simple
9.
BMC Biol ; 12: 86, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25359557

RESUMEN

BACKGROUND: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. RESULTS: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilised it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the 'Plasmodium interspersed repeat genes' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. CONCLUSIONS: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.


Asunto(s)
Expresión Génica , Genoma de Protozoos , Plasmodium falciparum/genética , Plasmodium/clasificación , Secuencia de Bases , Mapeo Cromosómico , Regulación de la Expresión Génica , Genotipo , Datos de Secuencia Molecular , Familia de Multigenes , Plasmodium/genética , Plasmodium falciparum/clasificación , ARN Protozoario/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
10.
Mol Microbiol ; 90(3): 519-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23980881

RESUMEN

Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites.


Asunto(s)
Variación Antigénica , Nucléolo Celular/fisiología , Cromosomas , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Mapeo Cromosómico , ADN Protozoario , ADN Ribosómico/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Sitios Genéticos , Genoma de Protozoos , Modelos Genéticos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN
11.
J Clin Microbiol ; 51(3): 745-51, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23224084

RESUMEN

The cost of whole-genome sequencing (WGS) is decreasing rapidly as next-generation sequencing technology continues to advance, and the prospect of making WGS available for public health applications is becoming a reality. So far, a number of studies have demonstrated the use of WGS as an epidemiological tool for typing and controlling outbreaks of microbial pathogens. Success of these applications is hugely dependent on efficient generation of clean genetic material that is free from host DNA contamination for rapid preparation of sequencing libraries. The presence of large amounts of host DNA severely affects the efficiency of characterizing pathogens using WGS and is therefore a serious impediment to clinical and epidemiological sequencing for health care and public health applications. We have developed a simple enzymatic treatment method that takes advantage of the methylation of human DNA to selectively deplete host contamination from clinical samples prior to sequencing. Using malaria clinical samples with over 80% human host DNA contamination, we show that the enzymatic treatment enriches Plasmodium falciparum DNA up to ∼9-fold and generates high-quality, nonbiased sequence reads covering >98% of 86,158 catalogued typeable single-nucleotide polymorphism loci.


Asunto(s)
Contaminación de ADN , ADN Protozoario/aislamiento & purificación , Malaria Falciparum/parasitología , Biología Molecular/métodos , Parasitología/métodos , Plasmodium falciparum/genética , Metilación de ADN , ADN Protozoario/genética , Humanos , Hidrólisis , Epidemiología Molecular/métodos , Plasmodium falciparum/aislamiento & purificación
12.
PLoS Pathog ; 7(3): e1001306, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21408201

RESUMEN

Many pathogenic bacteria, fungi, and protozoa achieve chronic infection through an immune evasion strategy known as antigenic variation. In the human malaria parasite Plasmodium falciparum, this involves transcriptional switching among members of the var gene family, causing parasites with different antigenic and phenotypic characteristics to appear at different times within a population. Here we use a genome-wide approach to explore this process in vitro within a set of cloned parasite populations. Our analyses reveal a non-random, highly structured switch pathway where an initially dominant transcript switches via a set of switch-intermediates either to a new dominant transcript, or back to the original. We show that this specific pathway can arise through an evolutionary conflict in which the pathogen has to optimise between safeguarding its limited antigenic repertoire and remaining capable of establishing infections in non-naïve individuals. Our results thus demonstrate a crucial role for structured switching during the early phases of infections and provide a unifying theory of antigenic variation in P. falciparum malaria as a balanced process of parasite-intrinsic switching and immune-mediated selection.


Asunto(s)
Variación Antigénica , Antígenos de Protozoos/genética , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Algoritmos , Perfilación de la Expresión Génica , Fenotipo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transcripción Genética
13.
Proc Natl Acad Sci U S A ; 106(18): 7559-64, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19376968

RESUMEN

We have cultured Plasmodium falciparum directly from the blood of infected individuals to examine patterns of mature-stage gene expression in patient isolates. Analysis of the transcriptome of P. falciparum is complicated by the highly periodic nature of gene expression because small variations in the stage of parasite development between samples can lead to an apparent difference in gene expression values. To address this issue, we have developed statistical likelihood-based methods to estimate cell cycle progression and commitment to asexual or sexual development lineages in our samples based on microscopy and gene expression patterns. In cases subsequently matched for temporal development, we find that transcriptional patterns in ex vivo culture display little variation across patients with diverse clinical profiles and closely resemble transcriptional profiles that occur in vitro. These statistical methods, available to the research community, assist in the design and interpretation of P. falciparum expression profiling experiments where it is difficult to separate true differential expression from cell-cycle dependent expression. We reanalyze an existing dataset of in vivo patient expression profiles and conclude that previously observed discrete variation is consistent with the commitment of a varying proportion of the parasite population to the sexual development lineage.


Asunto(s)
Ciclo Celular , Perfilación de la Expresión Génica , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Animales , Ciclo Celular/genética , Células Cultivadas , Humanos
14.
Mol Microbiol ; 76(1): 12-24, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20141604

RESUMEN

Recent advances in high-throughput sequencing present a new opportunity to deeply probe an organism's transcriptome. In this study, we used Illumina-based massively parallel sequencing to gain new insight into the transcriptome (RNA-Seq) of the human malaria parasite, Plasmodium falciparum. Using data collected at seven time points during the intraerythrocytic developmental cycle, we (i) detect novel gene transcripts; (ii) correct hundreds of gene models; (iii) propose alternative splicing events; and (iv) predict 5' and 3' untranslated regions. Approximately 70% of the unique sequencing reads map to previously annotated protein-coding genes. The RNA-Seq results greatly improve existing annotation of the P. falciparum genome with over 10% of gene models modified. Our data confirm 75% of predicted splice sites and identify 202 new splice sites, including 84 previously uncharacterized alternative splicing events. We also discovered 107 novel transcripts and expression of 38 pseudogenes, with many demonstrating differential expression across the developmental time series. Our RNA-Seq results correlate well with DNA microarray analysis performed in parallel on the same samples, and provide improved resolution over the microarray-based method. These data reveal new features of the P. falciparum transcriptional landscape and significantly advance our understanding of the parasite's red blood cell-stage transcriptome.


Asunto(s)
Sangre/parasitología , Eritrocitos/parasitología , Perfilación de la Expresión Génica , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Análisis de Secuencia de ADN/métodos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Seudogenes , Empalme del ARN , Factores de Tiempo
15.
Bioinformatics ; 26(14): 1704-7, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20562415

RESUMEN

MOTIVATION: The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. RESULTS: Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. AVAILABILITY: The software is available at http://icorn.sourceforge.net


Asunto(s)
Algoritmos , Genómica/métodos , Nucleótidos/química , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Genoma de Protozoos , Plasmodium falciparum , Alineación de Secuencia , Programas Informáticos
16.
Wellcome Open Res ; 6: 22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35310901

RESUMEN

After decades of research, our understanding of when and why individuals infected with Plasmodium falciparum develop clinical malaria is still limited. Correlates of immune protection are often sought through prospective cohort studies, where measured host factors are correlated against the incidence of clinical disease over a set period of time. However, robustly inferring individual-level protection from these population-level findings has proved difficult due to small effect sizes and high levels of variance underlying such data. In order to better understand the nature of these inter-individual variations, we analysed the long-term malaria epidemiology of children ≤12 years old growing up under seasonal exposure to the parasite in the sub-location of Junju, Kenya. Despite the cohort's limited geographic expanse (ca. 3km x 10km), our data reveal a high degree of spatial and temporal variability in malaria prevalence and incidence rates, causing individuals to experience varying levels of exposure to the parasite at different times during their life. Analysing individual-level infection histories further reveal an unexpectedly high variability in the rate at which children experience clinical malaria episodes. Besides exposure to the parasite, measured as disease prevalence in the surrounding area, we find that the birth time of year has an independent effect on the individual's risk of experiencing a clinical episode. Furthermore, our analyses reveal that those children with a history of an above average number of episodes are more likely to experience further episodes during the upcoming transmission season. These findings are indicative of phenotypic differences in the rates by which children acquire clinical protection to malaria and offer important insights into the natural variability underlying malaria epidemiology.

17.
Bioinformatics ; 25(15): 1968-9, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19497936

RESUMEN

SUMMARY: Due to the availability of new sequencing technologies, we are now increasingly interested in sequencing closely related strains of existing finished genomes. Recently a number of de novo and mapping-based assemblers have been developed to produce high quality draft genomes from new sequencing technology reads. New tools are necessary to take contigs from a draft assembly through to a fully contiguated genome sequence. ABACAS is intended as a tool to rapidly contiguate (align, order, orientate), visualize and design primers to close gaps on shotgun assembled contigs based on a reference sequence. The input to ABACAS is a set of contigs which will be aligned to the reference genome, ordered and orientated, visualized in the ACT comparative browser, and optimal primer sequences are automatically generated. AVAILABILITY AND IMPLEMENTATION: ABACAS is implemented in Perl and is freely available for download from http://abacas.sourceforge.net.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Alineación de Secuencia
18.
Nature ; 429(6991): 555-8, 2004 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15175751

RESUMEN

The malaria parasite Plasmodium falciparum has evolved to prolong its duration of infection by antigenic variation of a major immune target on the surface of the infected red blood cell. This immune evasion strategy depends on the sequential, rather than simultaneous, appearance of immunologically distinct variants. Although the molecular mechanisms by which a single organism switches between variants are known in part, it remains unclear how an entire population of parasites within the host can synchronize expression to avoid rapidly exhausting the variant repertoire. Here we show that short-lived, partially cross-reactive immune responses to parasite-infected erythrocyte surface antigens can produce a cascade of sequentially dominant antigenic variants, each of which is the most immunologically distinct from its preceding types. This model reconciles several previously unexplained and apparently conflicting epidemiological observations by demonstrating that individuals with stronger cross-reactive immune responses can, paradoxically, be more likely to sustain chronic infections. Antigenic variation has always been seen as an adaptation of the parasite to evade host defence: we show that the coordination necessary for the success of this strategy might be provided by the host.


Asunto(s)
Variación Antigénica , Reacciones Cruzadas/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Distribución por Edad , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Niño , Enfermedad Crónica/epidemiología , Epítopos/genética , Epítopos/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Prevalencia , Factores de Tiempo
20.
Mol Microbiol ; 68(6): 1519-34, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18433451

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, encoded by an extremely diverse gene family called var. Understanding of the genetic organization of var genes is hampered by sequence mosaicism that results from a long history of non-homologous recombination. Here we have used software designed to analyse social networks to visualize the relationships between large collections of short var sequences tags sampled from clinical parasite isolates. In this approach, two sequences are connected if they share one or more highly polymorphic sequence blocks. The results show that the majority of analysed sequences including several var-like sequences from the chimpanzee parasite Plasmodium reichenowi can be either directly or indirectly linked together in a single unbroken network. However, the network is highly structured and contains putative subgroups of recombining sequences. The major subgroup contains the previously described group A var genes, previously proposed to be genetically distinct. Another subgroup contains sequences found to be associated with rosetting, a parasite virulence phenotype. The mosaic structure of the sequences and their division into subgroups may reflect the conflicting problems of maximizing antigenic diversity and minimizing epitope sharing between variants while maintaining their host cell binding functions.


Asunto(s)
Variación Antigénica , Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Polimorfismo Genético , Proteínas Protozoarias/genética , Recombinación Genética , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Niño , Secuencia Conservada , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/química , Plasmodium falciparum/clasificación , Proteínas Protozoarias/química , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA