Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(47): 23398-23403, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685640

RESUMEN

Message passing is a fundamental technique for performing calculations on networks and graphs with applications in physics, computer science, statistics, and machine learning, including Bayesian inference, spin models, satisfiability, graph partitioning, network epidemiology, and the calculation of matrix eigenvalues. Despite its wide use, however, it has long been recognized that the method has a fundamental flaw: It works poorly on networks that contain short loops. Loops introduce correlations that can cause the method to give inaccurate answers or to fail completely in the worst cases. Unfortunately, most real-world networks contain many short loops, which limits the usefulness of the message-passing approach. In this paper we demonstrate how to rectify this shortcoming and create message-passing methods that work on any network. We give 2 example applications, one to the percolation properties of networks and the other to the calculation of the spectra of sparse matrices.

2.
Phys Rev Lett ; 117(7): 078301, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27564002

RESUMEN

Community detection, the division of a network into dense subnetworks with only sparse connections between them, has been a topic of vigorous study in recent years. However, while there exist a range of effective methods for dividing a network into a specified number of communities, it is an open question how to determine exactly how many communities one should use. Here we describe a mathematically principled approach for finding the number of communities in a network by maximizing the integrated likelihood of the observed network structure under an appropriate generative model. We demonstrate the approach on a range of benchmark networks, both real and computer generated.

3.
Phys Rev Lett ; 115(8): 088701, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26340218

RESUMEN

A substantial volume of research is devoted to studies of community structure in networks, but communities are not the only possible form of large-scale network structure. Here, we describe a broad extension of community structure that encompasses traditional communities but includes a wide range of generalized structural patterns as well. We describe a principled method for detecting this generalized structure in empirical network data and demonstrate with real-world examples how it can be used to learn new things about the shape and meaning of networks.

4.
Phys Rev Lett ; 113(20): 208702, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25432059

RESUMEN

We study percolation on networks, which is used as a model of the resilience of networked systems such as the Internet to attack or failure and as a simple model of the spread of disease over human contact networks. We reformulate percolation as a message passing process and demonstrate how the resulting equations can be used to calculate, among other things, the size of the percolating cluster and the average cluster size. The calculations are exact for sparse networks when the number of short loops in the network is small, but even on networks with many short loops we find them to be highly accurate when compared with direct numerical simulations. By considering the fixed points of the message passing process, we also show that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue of the so-called nonbacktracking matrix.

5.
Nature ; 453(7191): 98-101, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18451861

RESUMEN

Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems in many branches of science. Recent studies suggest that networks often exhibit hierarchical organization, in which vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales. In many cases the groups are found to correspond to known functional units, such as ecological niches in food webs, modules in biochemical networks (protein interaction networks, metabolic networks or genetic regulatory networks) or communities in social networks. Here we present a general technique for inferring hierarchical structure from network data and show that the existence of hierarchy can simultaneously explain and quantitatively reproduce many commonly observed topological properties of networks, such as right-skewed degree distributions, high clustering coefficients and short path lengths. We further show that knowledge of hierarchical structure can be used to predict missing connections in partly known networks with high accuracy, and for more general network structures than competing techniques. Taken together, our results suggest that hierarchy is a central organizing principle of complex networks, capable of offering insight into many network phenomena.


Asunto(s)
Algoritmos , Modelos Biológicos , Probabilidad , Vías Biosintéticas , Cadena Alimentaria , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Unión Proteica , Sensibilidad y Especificidad , Conducta Social
6.
Phys Rev E ; 108(2-1): 024311, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723783

RESUMEN

We study core-periphery structure in networks using inference methods based on a flexible network model that allows for traditional onionlike cores within cores, but also for hierarchical treelike structures and more general non-nested types of structures. We propose an efficient Monte Carlo scheme for fitting the model to observed networks and report results for a selection of real-world data sets. Among other things, we observe an empirical distinction between networks showing traditional core-periphery structure with a dense core weakly connected to a sparse periphery, and an alternative structure in which the core is strongly connected both within itself and to the periphery. Networks vary in whether they are better represented by one type of structure or the other. We also observe structures that are a hybrid between core-periphery structure and community structure, in which networks have a set of nonoverlapping cores that roughly correspond to communities, surrounded by a single undifferentiated periphery. Computer code implementing our methods is available.

7.
Phys Rev Lett ; 108(18): 188701, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22681123

RESUMEN

We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.

8.
Phys Rev E ; 105(1-1): 014312, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193232

RESUMEN

Statistical methods for reconstructing networks from repeated measurements typically assume that all measurements are generated from the same underlying network structure. This need not be the case, however. People's social networks might be different on weekdays and weekends, for instance. Brain networks may differ between healthy patients and those with dementia or other conditions. Here we describe a Bayesian analysis framework for such data that allows for the fact that network measurements may be reflective of multiple possible structures. We define a finite mixture model of the measurement process and derive a Gibbs sampling procedure that samples exactly from the full posterior distribution of model parameters. The end result is a clustering of the measured networks into groups with similar structure. We demonstrate the method on both real and synthetic network populations.

9.
Nat Commun ; 12(1): 3911, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162855

RESUMEN

Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing on the case of plant-pollinator networks, we here describe a Bayesian statistical technique that allows us to make accurate estimates of network structure and ecological metrics from such noisy observational data. Our method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method with an application to previously published data on plant-pollinator networks in the Seychelles archipelago and Kosciusko National Park, calculating estimates of network structure, network nestedness, and other characteristics.


Asunto(s)
Algoritmos , Insectos/fisiología , Modelos Biológicos , Plantas/parasitología , Polinización/fisiología , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Interacciones Huésped-Parásitos , Nueva Gales del Sur , Parques Recreativos , Seychelles
10.
Sci Adv ; 7(17)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893102

RESUMEN

Belief propagation is a widely used message passing method for the solution of probabilistic models on networks such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming that it works poorly in the common case of networks that contain short loops. Here, we provide a solution to this long-standing problem, deriving a belief propagation method that allows for fast calculation of probability distributions in systems with short loops, potentially with high density, as well as giving expressions for the entropy and partition function, which are notoriously difficult quantities to compute. Using the Ising model as an example, we show that our approach gives excellent results on both real and synthetic networks, improving substantially on standard message passing methods. We also discuss potential applications of our method to a variety of other problems.

11.
Ecology ; 91(10): 2941-51, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21058554

RESUMEN

The response of an ecosystem to perturbations is mediated by both antagonistic and facilitative interactions between species. It is thought that a community's resilience depends crucially on the food web--the network of trophic interactions--and on the food web's degree of compartmentalization. Despite its ecological importance, compartmentalization and the mechanisms that give rise to it remain poorly understood. Here we investigate several definitions of compartments, propose ways to understand the ecological meaning of these definitions, and quantify the degree of compartmentalization of empirical food webs. We find that the compartmentalization observed in empirical food webs can be accounted for solely by the niche organization of species and their diets. By uncovering connections between compartmentalization and species' diet contiguity, our findings help us understand which perturbations can result in fragmentation of the food web and which can lead to catastrophic effects. Additionally, we show that the composition of compartments can be used to address the long-standing question of what determines the ecological niche of a species.


Asunto(s)
Conducta Alimentaria/fisiología , Cadena Alimentaria , Animales , Modelos Biológicos
12.
Phys Rev E ; 101(5-1): 052306, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575211

RESUMEN

The most widely used techniques for community detection in networks, including methods based on modularity, statistical inference, and information theoretic arguments, all work by optimizing objective functions that measure the quality of network partitions. There is a good case to be made, however, that one should not look solely at the single optimal community structure under such an objective function but rather at a selection of high-scoring structures. If one does this, one typically finds that the resulting structures show considerable variation, which could be taken as evidence that these community detection methods are unreliable, since they do not appear to give consistent answers. Here we argue that, upon closer inspection, the structures found are in fact consistent in a certain way. Specifically, we show that they can all be assembled from a set of underlying "building blocks," groups of network nodes that are usually found together in the same community. Different community structures correspond to different arrangements of blocks, but the blocks themselves are largely invariant. We propose an information theoretic method for discovering the building blocks in specific networks and demonstrate it with several example applications. We conclude that traditional community detection does in fact give a significant amount of insight into network structure.

13.
Phys Rev E ; 101(4-1): 042304, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422767

RESUMEN

The information theoretic measure known as mutual information is widely used as a way to quantify the similarity of two different labelings or divisions of the same set of objects, such as arises, for instance, in clustering and classification problems in machine learning or community detection problems in network science. Here we argue that the standard mutual information, as commonly defined, omits a crucial term which can become large under real-world conditions, producing results that can be substantially in error. We derive an expression for this missing term and hence write a corrected mutual information that gives accurate results even in cases where the standard measure fails. We discuss practical implementation of the new measure and give example applications.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066118, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19658575

RESUMEN

In the last few years we have witnessed the emergence, primarily in online communities, of new types of social networks that require for their representation more complex graph structures than have been employed in the past. One example is the folksonomy, a tripartite structure of users, resources, and tags-labels collaboratively applied by the users to the resources in order to impart meaningful structure on an otherwise undifferentiated database. Here we propose a mathematical model of such tripartite structures that represents them as random hypergraphs. We show that it is possible to calculate many properties of this model exactly in the limit of large network size and we compare the results against observations of a real folksonomy, that of the online photography website Flickr. We show that in some cases the model matches the properties of the observed network well, while in others there are significant differences, which we find to be attributable to the practice of multiple tagging, i.e., the application by a single user of many tags to one resource or one tag to many resources.

15.
Phys Rev E ; 100(1-1): 012314, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499775

RESUMEN

The spectrum of the adjacency matrix plays several important roles in the mathematical theory of networks and network data analysis, for example in percolation theory, community detection, centrality measures, and the theory of dynamical systems on networks. A number of methods have been developed for the analytic computation of network spectra, but they typically assume that networks are locally treelike, meaning that the local neighborhood of any node takes the form of a tree, free of short loops. Empirically observed networks, by contrast, often have many short loops. Here we develop an approach for calculating the spectra of networks with short loops using a message passing method. We give example applications to some previously studied classes of networks and find that the presence of loops induces substantial qualitative changes in the shape of network spectra, generating asymmetries, multiple spectral bands, and other features.

16.
Phys Rev E ; 99(4-1): 042306, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108687

RESUMEN

We study mixing patterns in networks, meaning the propensity for nodes of different kinds to connect to one another. The phenomenon of assortative mixing, whereby nodes prefer to connect to others that are similar to themselves, has been widely studied, but here we go further and examine how and to what extent nodes that are otherwise similar can have different preferences. Many individuals in a friendship network, for instance, may prefer friends who are roughly the same age as themselves, but some may display a preference for older or younger friends. We introduce a network model that captures this behavior and a method for fitting it to empirical network data. We propose metrics to characterize the mean and variation of mixing patterns and show how to infer their values from the fitted model, either using maximum-likelihood estimates of model parameters or in a Bayesian framework that does not require fixing any parameters.

17.
Sociol Sci ; 6: 219-234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31363485

RESUMEN

We study the structure of heterosexual dating markets in the United States through an analysis of the interactions of several million users of a large online dating website, applying recently developed network analysis methods to the pattern of messages exchanged among users. Our analysis shows that the strongest driver of romantic interaction at the national level is simple geographic proximity, but at the local level, other demographic factors come into play. We find that dating markets in each city are partitioned into submarkets along lines of age and ethnicity. Sex ratio varies widely between submarkets, with younger submarkets having more men and fewer women than older ones. There is also a noticeable tendency for minorities, especially women, to be younger than the average in older submarkets, and our analysis reveals how this kind of racial stratification arises through the messaging decisions of both men and women. Our study illustrates how network techniques applied to online interactions can reveal the aggregate effects of individual behavior on social structure.

18.
Phys Rev E ; 99(4-1): 042309, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108596

RESUMEN

We derive a message-passing method for computing the spectra of locally treelike networks and an approximation to it that allows us to compute closed-form expressions or fast numerical approximates for the spectral density of random graphs with arbitrary node degrees-the so-called configuration model. We find that the latter approximation works well for all but the sparsest of networks. We also derive bounds on the position of the band edges of the spectrum, which are important for identifying structural phase transitions in networks.

19.
Phys Rev E ; 99(1-1): 012320, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30780212

RESUMEN

We consider signed networks in which connections or edges can be either positive (friendship, trust, alliance) or negative (dislike, distrust, conflict). Early literature in graph theory theorized that such networks should display "structural balance," meaning that certain configurations of positive and negative edges are favored and others are disfavored. Here we propose two measures of balance in signed networks based on the established notions of weak and strong balance, and we compare their performance on a range of tasks with each other and with previously proposed measures. In particular, we ask whether real-world signed networks are significantly balanced by these measures compared to an appropriate null model, finding that indeed they are, by all the measures studied. We also test our ability to predict unknown signs in otherwise known networks by maximizing balance. In a series of cross-validation tests we find that our measures are able to predict signs substantially better than chance.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 2): 046119, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18517702

RESUMEN

The discovery of community structure is a common challenge in the analysis of network data. Many methods have been proposed for finding community structure, but few have been proposed for determining whether the structure found is statistically significant or whether, conversely, it could have arisen purely as a result of chance. In this paper we show that the significance of community structure can be effectively quantified by measuring its robustness to small perturbations in network structure. We propose a suitable method for perturbing networks and a measure of the resulting change in community structure and use them to assess the significance of community structure in a variety of networks, both real and computer generated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA