Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38895365

RESUMEN

Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features that are shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having ~180 neurons. However, the depth of conservation between the Ciona CNS and those in vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a spinal cord-like structure at the base of the chordates. We extend our analysis of shared CNS anatomy further to explore the Ciona "motor ganglion", which has been proposed to be a homolog of the vertebrate hindbrain, spinal cord, or both. We find that a cluster of neurons in the dorsal motor ganglion shares anatomical location, developmental pathway, neural circuit architecture, and gene expression with the vertebrate cerebellum. However, functionally, the Ciona cluster appears to have more in common with vertebrate cerebellum-like structures, insofar as it receives and processes direct sensory input. These findings are consistent with earlier speculation that the cerebellum evolved from a cerebellum-like structure, and suggest that the latter structure was present in the dorsal hindbrain of a common chordate ancestor.

2.
PLoS Genet ; 4(2): e1000022, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18454199

RESUMEN

The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Resistencia a Medicamentos/genética , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Radicales Libres/metabolismo , Radicales Libres/toxicidad , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Genes de Helminto , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Atrofia Óptica Autosómica Dominante/etiología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Fosforilación Oxidativa , Paraquat/toxicidad , Fenotipo , Interferencia de ARN , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
3.
Dev Biol ; 284(2): 509-22, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15979606

RESUMEN

Specification of the endoderm precursor, the E cell, in Caenorhabditis elegans requires a genomic region called the Endoderm Determining Region (EDR). We showed previously that end-1, a gene within the EDR encoding a GATA-type transcription factor, restores endoderm specification to embryos deleted for the EDR and obtained evidence for genetic redundancy in this process. Here, we report molecular identification of end-3, a nearby paralog of end-1 in the EDR, and show that end-1 and end-3 together define the endoderm-specifying properties of the EDR. Both genes are expressed in the early E lineage and each is individually sufficient to specify endodermal fate in the E cell and in non-endodermal precursors when ectopically expressed. The loss of function of both end genes, but not either one alone, eliminates endoderm in nearly all embryos and results in conversion of E into a C-like mesectodermal precursor, similar to deletions of the EDR. While two putative end-1 null mutants display no overt phenotype, a missense mutation that alters a residue in the zinc finger domain of END-3 results in misspecification of E in approximately 9% of mutant embryos. We report that the EDR in C. briggsae, which is estimated to have diverged from C. elegans approximately 50--120 myr ago, contains three end-like genes, resulting from both the ancient duplication that produced end-1 and end-3 in C. elegans, and a more recent duplication of end-3 in the lineage specific to C. briggsae. Transgenes containing the C. briggsae end homologs show E lineage-specific expression and function in C. elegans, demonstrating their functional conservation. Moreover, RNAi experiments indicate that the C. briggsae end genes also function redundantly to specify endoderm. We propose that duplicated end genes have been maintained over long periods of evolution, owing in part to their synergistic function.


Asunto(s)
Caenorhabditis elegans/genética , Endodermo/metabolismo , Duplicación de Gen , Proteínas del Helminto/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Caenorhabditis/genética , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Secuencia Conservada , Embrión no Mamífero , Endodermo/citología , Evolución Molecular , Factores de Transcripción GATA , Genes de Helminto , Proteínas del Helminto/química , Proteínas del Helminto/genética , Hibridación in Situ , Microscopía por Video , Modelos Biológicos , Datos de Secuencia Molecular , Mutación Missense , Estructura Terciaria de Proteína , Interferencia de ARN , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA