Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 188(1): 442-459, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34747472

RESUMEN

Chloroplasts are the sites for photosynthesis, and two Golden2-like factors act as transcriptional activators of chloroplast development in rice (Oryza sativa L.) and maize (Zea mays L.). Rice OsGLK1 and OsGLK2 are orthologous to maize ZmGLK1 (ZmG1) and ZmGLK2 (ZmG2), respectively. However, while rice OsGLK1 and OsGLK2 act redundantly to regulate chloroplast development in mesophyll cells, maize ZmG1 and ZmG2 are functionally specialized and expressed in different cell-specific manners. To boost rice chloroplast development and photosynthesis, we generated transgenic rice plants overexpressing ZmG1 and ZmG2, individually or simultaneously, with constitutive promoters (pZmUbi::ZmG1 and p35S::ZmG2) or maize promoters (pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2). Both ZmG1 and ZmG2 genes were highly expressed in transgenic rice leaves. Moreover, ZmG1 and ZmG2 showed coordinated expression in pZmG1::ZmG1/pZmG2::ZmG2 plants. All Golden2-like (GLK) transgenic plants had higher chlorophyll and protein contents, Rubisco activities and photosynthetic rates per unit leaf area in flag leaves. However, the highest grain yields occurred when maize promoters were used; pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2 transgenic plants showed increases in grain yield by 51%, 47%, and 70%, respectively. In contrast, the pZmUbi::ZmG1 plant produced smaller seeds without yield increases. Transcriptome analysis indicated that maize GLKs act as master regulators promoting the expression of both photosynthesis-related and stress-responsive regulatory genes in both rice shoot and root. Thus, by promoting these important functions under the control of their own promoters, maize GLK1 and GLK2 genes together dramatically improved rice photosynthetic performance and productivity. A similar approach can potentially improve the productivity of many other crops.


Asunto(s)
Cloroplastos/genética , Cloroplastos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Fotosíntesis/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Zea mays/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Factores de Transcripción/genética
2.
Plant J ; 97(6): 1073-1088, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30523657

RESUMEN

The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Oryza/enzimología , Proteínas de Plantas/metabolismo , Almidón/biosíntesis , Zea mays/genética , Regulación hacia Abajo , Endospermo/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Regulación hacia Arriba
4.
Rice (N Y) ; 8(1): 36, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26643073

RESUMEN

BACKGROUND: Cytokinins are plant-specific hormones that affect plant growth and development. The endogenous level of cytokinins in plant cells is regulated in part by irreversible degradation via cytokinin oxidase/dehydrogenase (CKX). Among the 11 rice CKXs, CKX2 has been implicated in regulation of rice grain yield. RESULTS: To specifically down-regulate OsCKX2 expression, we have chosen two conserved glycosylation regions of OsCKX2 for designing artificial short hairpin RNA interference genes (shRNA-CX3 and -CX5, representing the 5' and 3' glycosylation region sequences, respectively) for transformation by the Agrobacterium-mediated method. For each construct, 5 independent transgenic lines were obtained for detailed analysis. Southern blot analysis confirmed the integration of the shRNA genes into the rice genome, and quantitative real time RT-PCR and northern blot analyses showed reduced OsCKX2 expression in the young stem of transgenic rice at varying degrees. However, the expression of other rice CKX genes, such as CKX1 and CKX3, in these transgenic lines was not altered. Transgenic rice plants grown in the greenhouse were greener and more vigorous with delayed senescence, compared to the wild type. In field experiments, both CX3 and CX5 transgenic rice plants produced more tillers (27-81 %) and grains (24-67 %) per plant and had a heavier 1000 grain weight (5-15 %) than the wild type. The increases in grain yield were highly correlated with increased tiller numbers. Consistently, insertional activation of OsCKX2 led to increased expression of CKX2 and reduced tiller number and growth in a gene-dosage dependant manner. CONCLUSIONS: Taken together, these results demonstrate that specific suppression of OsCKX2 expression through shRNA-mediated gene silencing leads to enhanced growth and productivity in rice by increasing tiller number and grain weight.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA