Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 300(7): 107470, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879012

RESUMEN

Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the ß-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.

2.
Am J Physiol Cell Physiol ; 317(3): C576-C583, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31291141

RESUMEN

A murine line haploinsufficient in the cardiac sodium channel has been used to model human Brugada syndrome: a disease causing sudden cardiac death due to lethal ventricular arrhythmias. We explored the effects of cholinergic tone on electrophysiological parameters in wild-type and genetically modified, heterozygous, Scn5a+/- knockout mice. Scn5a+/- ventricular slices showed longer refractory periods than wild-type both at baseline and during isoprenaline challenge. Scn5a+/- hearts also showed lower conduction velocities and increased mean increase in delay than did littermate controls at baseline and blunted responses to isoprenaline challenge. Carbachol exerted limited effects but reversed the effects of isoprenaline with coapplication. Scn5a+/- mice showed a reduction in conduction reserve in that isoprenaline no longer increased conduction velocity, and this was not antagonized by muscarinic agonists.


Asunto(s)
Síndrome de Brugada/metabolismo , Haploinsuficiencia/fisiología , Preparación de Corazón Aislado , Contracción Miocárdica/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatología , Femenino , Preparación de Corazón Aislado/métodos , Masculino , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canales de Sodio/deficiencia , Canales de Sodio/genética
3.
PLoS Biol ; 11(9): e1001666, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24086110

RESUMEN

Cardiomyocytes are vulnerable to hypoxia in the adult, but adapted to hypoxia in utero. Current understanding of endogenous cardiac oxygen sensing pathways is limited. Myocardial oxygen consumption is determined by regulation of energy metabolism, which shifts from glycolysis to lipid oxidation soon after birth, and is reversed in failing adult hearts, accompanying re-expression of several "fetal" genes whose role in disease phenotypes remains unknown. Here we show that hypoxia-controlled expression of the transcription factor Hand1 determines oxygen consumption by inhibition of lipid metabolism in the fetal and adult cardiomyocyte, leading to downregulation of mitochondrial energy generation. Hand1 is under direct transcriptional control by HIF1α. Transgenic mice prolonging cardiac Hand1 expression die immediately following birth, failing to activate the neonatal lipid metabolising gene expression programme. Deletion of Hand1 in embryonic cardiomyocytes results in premature expression of these genes. Using metabolic flux analysis, we show that Hand1 expression controls cardiomyocyte oxygen consumption by direct transcriptional repression of lipid metabolising genes. This leads, in turn, to increased production of lactate from glucose, decreased lipid oxidation, reduced inner mitochondrial membrane potential, and mitochondrial ATP generation. We found that this pathway is active in adult cardiomyocytes. Up-regulation of Hand1 is protective in a mouse model of myocardial ischaemia. We propose that Hand1 is part of a novel regulatory pathway linking cardiac oxygen levels with oxygen consumption. Understanding hypoxia adaptation in the fetal heart may allow development of strategies to protect cardiomyocytes vulnerable to ischaemia, for example during cardiac ischaemia or surgery.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Miocardio/metabolismo , Consumo de Oxígeno/genética , Adenosina Trifosfato/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula/genética , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Corazón/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Oxígeno/metabolismo , Activación Transcripcional
4.
J Mol Cell Cardiol ; 74: 340-52, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24984146

RESUMEN

Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after birth acts as a physiological switch driving mitochondrial fusion and increased postnatal mitochondrial biogenesis. We also investigated mechanisms of ATP generation in embryonic cardiac mitochondria. We found that embryonic cardiac cardiomyocytes rely on both glycolysis and the tricarboxylic acid cycle to generate ATP, and that the balance between these two metabolic pathways in the heart is controlled around birth by the reduction in HIF signaling. We therefore propose that the increase in ambient oxygen encountered by the neonate at birth acts as a key physiological stimulus to cardiac mitochondrial adaptation.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Hipoxia/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Adenosina Trifosfato/biosíntesis , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Glucólisis/efectos de los fármacos , Glucólisis/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Oxígeno/farmacología , Transducción de Señal , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
5.
Circ Arrhythm Electrophysiol ; 16(9): e011870, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37646176

RESUMEN

BACKGROUND: Hypoxia-ischemia predisposes to atrial arrhythmia. Atrial ATP-sensitive potassium channel (KATP) modulation during hypoxia has not been explored. We investigated the effects of hypoxia on atrial electrophysiology in mice with global deletion of KATP pore-forming subunits. METHODS: Whole heart KATP RNA expression was probed. Whole-cell KATP current and action potentials were recorded in isolated wild-type (WT), Kir6.1 global knockout (6.1-gKO), and Kir6.2 global knockout (6.2-gKO) murine atrial myocytes. Langendorff-perfused hearts were assessed for atrial effective refractory period (ERP), conduction velocity, wavefront path length (WFPL), and arrhymogenicity under normoxia/hypoxia using a microelectrode array and programmed electrical stimulation. Heart histology was assessed. RESULTS: Expression patterns were essentially identical for all KATP subunit RNA across human heart, whereas in mouse, Kir6.1 and SUR2 (sulphonylurea receptor subunit) were higher in ventricle than atrium, and Kir6.2 and SUR1 were higher in atrium. Compared with WT, 6.2-gKO atrial myocytes had reduced tolbutamide-sensitive current and action potentials were more depolarized with slower upstroke and reduced peak amplitude. Action potential duration was prolonged in 6.1-gKO atrial myocytes, absent of changes in other ion channel gene expression or atrial myocyte hypertrophy. In Langendorff-perfused hearts, baseline atrial ERP was prolonged and conduction velocity reduced in both KATP knockout mice compared with WT, without histological fibrosis. Compared with baseline, hypoxia led to conduction velocity slowing, stable ERP, and WFPL shortening in WT and 6.1-gKO hearts, whereas WFPL was stable in 6.2-gKO hearts due to ERP prolongation with conduction velocity slowing. Tolbutamide reversed hypoxia-induced WFPL shortening in WT and 6.1-gKO hearts through ERP prolongation. Atrial tachyarrhythmias inducible with programmed electrical stimulation during hypoxia in WT and 6.1-gKO mice correlated with WFPL shortening. Spontaneous arrhythmia was not seen. CONCLUSIONS: KATP block/absence leads to cellular and tissue level atrial electrophysiological modification. Kir6.2 global knockout prevents hypoxia-induced atrial WFPL shortening and atrial arrhythmogenicity to programmed electrical stimulation. This mechanism could be explored translationally to treat ischemically driven atrial arrhythmia.


Asunto(s)
Fibrilación Atrial , Canales KATP , Humanos , Animales , Ratones , Canales KATP/genética , Fibrilación Atrial/genética , Tolbutamida , Taquicardia , Atrios Cardíacos , Hipoxia/complicaciones , Hipoxia/genética , Adenosina Trifosfato
6.
Front Physiol ; 13: 1033216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589427

RESUMEN

There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.

7.
Pflugers Arch ; 462(1): 135-42, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21484537

RESUMEN

Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221-231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393-403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674-2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78-85, 2006; Geier et al. Circulation 107:1390-1395, 2003; Hershberger et al. Clin Transl Sci 1:21-26, 2008; Knöll et al. Cell 111:943-955, 2002; Knöll et al. Circ Res 106:695-704, 2010; Mohapatra et al. Mol Genet Metab 80:207-215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms-how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research.


Asunto(s)
Corazón/fisiología , Mecanotransducción Celular/fisiología , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Corazón/anatomía & histología , Corazón/fisiopatología , Humanos , Proteínas con Dominio LIM , Proteínas Musculares/genética , Miocardio/citología , Miocardio/patología , Estrés Mecánico
8.
J Membr Biol ; 234(2): 137-47, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20306027

RESUMEN

Our aim was to determine the subcellular localization and functional roles of the K(ATP) channel subunit Kir6.1 in intracellular membranes. Specifically, we focused on the potential role of Kir6.1 as a subunit of the mitochondrial ATP-sensitive K+ channel. Cell imaging showed that a major proportion of heterologously expressed Kir6.1-GFP and endogenously expressed Kir6.1 was distributed in the endoplasmic reticulum with little in the mitochondria or plasma membrane. We used pharmacological and molecular tools to investigate the functional significance of this distribution. The K(ATP) channel opener diazoxide increased reactive oxygen species production, and glibenclamide abolished this effect. However, in cells lacking Kir6.1 or expressing siRNA or dominant negative constructs of Kir6.1, the same effect was seen. Ca2+ handling was examined in the muscle cell line C2C12. Transfection of the dominant negative constructs of Kir6.1 significantly reduced the amplitude and rate of rise of [Ca2+]( c ) transients elicited by ATP. This study suggests that Kir6.1 is located in the endoplasmic reticulum and plays a role in modifying Ca2+ release from intracellular stores.


Asunto(s)
Canales de Potasio de Rectificación Interna/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Diazóxido/farmacología , Retículo Endoplásmico/metabolismo , Humanos , Precondicionamiento Isquémico , Canales KATP , Riñón/embriología , Ratones , Músculo Esquelético/metabolismo , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Cardiol ; 302: 124-130, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31843279

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) encompasses a group of inherited cardiomyopathies including arrhythmogenic right ventricular cardiomyopathy (ARVC) whose molecular disease mechanism is associated with dysregulation of the canonical WNT signalling pathway. Recent evidence indicates that ARVC and ACM caused by pathogenic variants in the FLNC gene encoding filamin C, a major cardiac structural protein, may have different molecular mechanisms of pathogenesis. We sought to identify dysregulated biological pathways in FLNC-associated ACM. RNA was extracted from seven paraffin-embedded left ventricular tissue samples from deceased ACM patients carrying FLNC variants and sequenced. Transcript levels of 623 genes were upregulated and 486 genes were reduced in ACM in comparison to control samples. The cell adhesion pathway and ILK signalling were among the prominent dysregulated pathways in ACM. Consistent with these findings, transcript levels of cell adhesion genes JAM2, NEO1, VCAM1 and PTPRC were upregulated in ACM samples. Moreover, several actin-associated genes, including FLNC, VCL, PARVB and MYL7, were suppressed, suggesting dysregulation of the actin cytoskeleton. Analysis of the transcriptome for dysregulated biological pathways predicted activation of inflammation and apoptosis and suppression of oxidative phosphorylation and MTORC1 signalling in ACM. Our data suggests dysregulated cell adhesion and ILK signalling as novel putative pathogenic mechanisms of ACM caused by FLNC variants which are distinct from the postulated disease mechanism of classic ARVC caused by desmosomal gene mutations. This knowledge could help in the design of future gene therapy strategies which would target specific components of these pathways and potentially lead to novel treatments for ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , ADN/genética , Filaminas/genética , Predisposición Genética a la Enfermedad , Mutación , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Análisis Mutacional de ADN , Filaminas/metabolismo , Perfilación de la Expresión Génica , Humanos , Fenotipo
10.
Nat Commun ; 9(1): 1021, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523849

RESUMEN

Hyperproliferative keratinocytes induced by trauma, hyperkeratosis and/or inflammation display molecular signatures similar to those of palmoplantar epidermis. Inherited gain-of-function mutations in RHBDF2 (encoding iRHOM2) are associated with a hyperproliferative palmoplantar keratoderma and squamous oesophageal cancer syndrome (termed TOC). In contrast, genetic ablation of rhbdf2 in mice leads to a thinning of the mammalian footpad, and reduces keratinocyte hyperproliferation and migration. Here, we report that iRHOM2 is a novel target gene of p63 and that both p63 and iRHOM2 differentially regulate cellular stress-associated signalling pathways in normal and hyperproliferative keratinocytes. We demonstrate that p63-iRHOM2 regulates cell survival and response to oxidative stress via modulation of SURVIVIN and Cytoglobin, respectively. Furthermore, the antioxidant compound Sulforaphane downregulates p63-iRHOM2 expression, leading to reduced proliferation, inflammation, survival and ROS production. These findings elucidate a novel p63-associated pathway that identifies iRHOM2 modulation as a potential therapeutic target to treat hyperproliferative skin disease and neoplasia.


Asunto(s)
Proteínas Portadoras/metabolismo , Proliferación Celular/genética , Carcinoma de Células Escamosas de Esófago/patología , Queratinocitos/metabolismo , Estrés Oxidativo/genética , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Animales , Apoptosis/genética , Proteínas Portadoras/genética , Línea Celular , Supervivencia Celular/genética , Citoglobina/biosíntesis , Femenino , Células HEK293 , Humanos , Isotiocianatos/farmacología , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de la Piel/patología , Sulfóxidos , Survivin/biosíntesis , Transactivadores/genética
11.
Circ Cardiovasc Genet ; 8(5): 643-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175529

RESUMEN

BACKGROUND: Mutations in sarcomeric and cytoskeletal proteins are a major cause of hereditary cardiomyopathies, but our knowledge remains incomplete as to how the genetic defects execute their effects. METHODS AND RESULTS: We used cysteine and glycine-rich protein 3, a known cardiomyopathy gene, in a yeast 2-hybrid screen and identified zinc-finger and BTB domain-containing protein 17 (ZBTB17) as a novel interacting partner. ZBTB17 is a transcription factor that contains the peak association signal (rs10927875) at the replicated 1p36 cardiomyopathy locus. ZBTB17 expression protected cardiac myocytes from apoptosis in vitro and in a mouse model with cardiac myocyte-specific deletion of Zbtb17, which develops cardiomyopathy and fibrosis after biomechanical stress. ZBTB17 also regulated cardiac myocyte hypertrophy in vitro and in vivo in a calcineurin-dependent manner. CONCLUSIONS: We revealed new functions for ZBTB17 in the heart, a transcription factor that may play a role as a novel cardiomyopathy gene.


Asunto(s)
Cardiomiopatías/genética , Insuficiencia Cardíaca/genética , Proteínas Nucleares/genética , Animales , Proteínas de Unión al ADN , Corazón/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/fisiología , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/fisiología , Ratas , Estrés Fisiológico , Técnicas de Cultivo de Tejidos , Ubiquitina-Proteína Ligasas
12.
Hypertension ; 64(3): 523-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24914196

RESUMEN

ATP-sensitive potassium channels (KATP) regulate a range of biological activities by coupling membrane excitability to the cellular metabolic state. In particular, it has been proposed that KATP channels and specifically, the channel subunits Kir6.1 and SUR2B, play an important role in the regulation of vascular tone. However, recent experiments have suggested that KATP channels outside the vascular smooth muscle compartment are the key determinant of the observed behavior. Thus, we address the importance of the vascular smooth muscle KATP channel, using a novel murine model in which it is possible to conditionally delete the Kir6.1 subunit. Using a combination of molecular, electrophysiological, in vitro, and in vivo techniques, we confirmed the absence of Kir6.1 and KATP currents and responses specifically in smooth muscle. Mice with conditional deletion of Kir6.1 showed no obvious arrhythmic phenotype even after provocation with ergonovine. However, these mice were hypertensive and vascular smooth muscle cells failed to respond to vasodilators in a normal fashion. Thus, Kir6.1 underlies the vascular smooth muscle KATP channel and has a key role in vascular reactivity and blood pressure control.


Asunto(s)
Presión Sanguínea/fisiología , Canales KATP/fisiología , Músculo Liso Vascular/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/farmacología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Técnicas In Vitro , Canales KATP/deficiencia , Canales KATP/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Técnicas de Placa-Clamp , Pinacidilo/farmacología , Vasodilatadores/farmacología
13.
J Cardiovasc Transl Res ; 4(3): 238-44, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21360311

RESUMEN

Mechanosensation (the ultimate conversion of a mechanical stimulus into a biochemical signal) as well as mechanotransduction (transmission of mechanically induced signals) belong to the most fundamental processes in biology. These effects, because of their dynamic nature, are particularly important for the cardiovascular system. Therefore, it is not surprising that defects in cardiac mechanosensation, are associated with various types of cardiomyopathy and heart failure. However, our current knowledge regarding the genetic basis of impaired mechanosensation in the cardiovascular system is beginning to shed light on this subject and is at the centre of this brief review.


Asunto(s)
Cardiomiopatías/genética , Insuficiencia Cardíaca/genética , Mecanotransducción Celular/genética , Miocardio/metabolismo , Sensación/genética , Angiotensina II/genética , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Conectina , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Filamentos Intermedios/metabolismo , Proteínas Musculares/genética , Mutación , Polimorfismo Genético , Proteínas Quinasas/genética , Sistema Renina-Angiotensina/genética , Sarcómeros/metabolismo , Estrés Mecánico
14.
Biotechnol J ; 6(1): 86-95, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21053334

RESUMEN

Manifestations of myocardial infarctions have been recognized as one of the major killers in the Western world. Therefore, advancing and developing novel cardiac tissue repair and replacement therapeutics have great implications to our health sciences and well-being. There are several approaches for forming cardiac tissues, non-jet-based and jet-based methodologies. A unique advantage of jet-based approaches is the possibility to handle living cells with a matrix for cell distribution and deposition in suspension, either as single or heterogeneous cell populations. Our previous studies on bio-electrospraying of cardiac cells have shown great promise. Here, we show for the first time the ability to bio-electrospray the three major cell types of the myocardium, both independently and simultaneously, for forming a fully functional cardiac tissue. Several samples are characterized in vitro and found to be indistinguishable in comparison to controls. Thus, we are describing a swiftly emerging novel biotechnique for direct cardiac tissue generation. Moreover, the present investigations pave the way for the development and optimization of a bio-patterning approach for the fabrication of biologically viable cardiac tissue grafts for the potential treatment of severe heart failure after myocardial infarction.


Asunto(s)
Miocardio/citología , Miocitos Cardíacos/citología , Animales , Western Blotting , Supervivencia Celular/fisiología , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos
15.
Dev Biol ; 279(2): 402-19, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15733668

RESUMEN

In this study, we investigate the possible role of ephrin-Eph signaling in trigeminal motor axon projections. We find that EphA receptors are expressed at higher levels by rhombomere 2 (r2) trigeminal motor neurons than by r3 trigeminal motor neurons in the chick embryo. Mapping of rhombomere-specific axon projections shows that r2 and r3 trigeminal motor neurons project to different muscle targets, including the mandibular adductor and the intermandibularis muscles respectively. Ephrin-A5 is expressed in these muscles, especially in some regions of the intermandibularis muscle, and can cause growth cone collapse of both r2 and r3 motor axons in vitro. We demonstrate that in vivo overexpression of ephrin-A5 in the intermandibularis muscle, or overexpression of dominant-negative EphA receptors in trigeminal motor neurons leads to a reduction in branching of r3-derived motor axons specifically. Overexpression of full-length EphA receptors impairs the formation of r3 projections to the intermandibularis muscle. These findings indicate that ephrins and their Eph receptors play a role in trigeminal motor axon topographic mapping and in rhombomere 3-derived projections in particular.


Asunto(s)
Tipificación del Cuerpo , Embrión de Pollo/fisiología , Efrina-A5/metabolismo , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Nervio Trigémino/embriología , Animales , Embrión de Pollo/anatomía & histología , Efrina-A5/genética , Inmunohistoquímica , Hibridación in Situ , Morfogénesis/fisiología , Neuronas Motoras/citología , Músculo Esquelético/embriología , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Nervio Trigémino/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA