Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Comput Dent ; 26(3): 201-210, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36625373

RESUMEN

AIM: The accuracy of 3D images produced by an intraoral scanner (IOS) is affected by the optical characteristics of restorative materials such as metal, ceramic, and composite resin. The present in vitro study aimed to investigate the impact of core buildup composite resin translucency on IOS accuracy. MATERIALS AND METHODS: A core buildup procedure was performed on a proprietary 3D-printed model using injectable composite resins in four groups with different levels of translucency (highest to lowest: AE, A3, AO3, and EX). Ten experimental scans per group were performed using a Medit i700 IOS on a phantom head-mounted model. Reference scans were obtained using an industrial scanner (Solutionix C500). Values of accuracy (trueness and precision) for the respective groups were evaluated using mean deviation values following 3D superimposition. RESULTS: Composite resin translucency caused the scale reduction of the optical impressions. Values of trueness showed the highest scale reduction in AE, significantly, followed by A3, AO3, and EX. Considering 50 µm as the cut-off value of deviations for clinical acceptability, the analysis showed most deviations in AE and A3. Similar results were found with precision, where AE showed the highest deviation value statistically, followed by A3, AO3, and EX. CONCLUSIONS: Composite resin translucency affects the accuracy of optical impressions, causing a fitting error of CAD/CAM prostheses. The more translucent the composite resin, the less accurate the optical impression. This suggests the need for proper compensation during prosthesis designing for an optimal clinical result. In addition, practitioners should indicate in the digital workflow the proper restorative materials regarding not only the mechanical properties and esthetics, but also the optical characteristics.


Asunto(s)
Resinas Compuestas , Técnica de Impresión Dental , Humanos , Modelos Dentales , Estética Dental , Materiales Dentales , Imagenología Tridimensional , Diseño Asistido por Computadora
2.
Mol Cell Proteomics ; 18(4): 622-641, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30617155

RESUMEN

Lung cancer is the leading cause of cancer death in both men and women. Tumor heterogeneity is an impediment to targeted treatment of all cancers, including lung cancer. Here, we sought to characterize tumor proteome and phosphoproteome changes by longitudinal, prospective collection of tumor tissue from an exceptional responder lung adenocarcinoma patient who survived with metastatic lung adenocarcinoma for over seven years while undergoing HER2-directed therapy in combination with chemotherapy. We employed "Super-SILAC" and TMT labeling strategies to quantify the proteome and phosphoproteome of a lung metastatic site and eight distinct metastatic progressive lymph nodes collected during these seven years, including five lymph nodes procured at autopsy. We identified specific signaling networks enriched in lung compared with the lymph node metastatic sites. We correlated the changes in protein abundance with changes in copy number alteration (CNA) and transcript expression. ERBB2/HER2 protein expression was higher in lung, consistent with a higher degree of ERBB2 amplification in lung compared with the lymph node metastatic sites. To further interrogate the mass spectrometry data, a patient-specific database was built by incorporating all the somatic and germline variants identified by whole genome sequencing (WGS) of genomic DNA from the lung, one lymph node metastatic site and blood. An extensive validation pipeline was built to confirm variant peptides. We validated 360 spectra corresponding to 55 germline and 6 somatic variant peptides. Targeted MRM assays revealed two novel variant somatic peptides, CDK12-G879V and FASN-R1439Q, expressed in lung and lymph node metastatic sites, respectively. The CDK12-G879V mutation likely results in a nonfunctional CDK12 kinase and chemotherapy susceptibility in lung metastatic sites. Knockdown of CDK12 in lung adenocarcinoma cells increased chemotherapy sensitivity which was rescued by wild type, but not CDK12-G879V expression, consistent with the complete resolution of the lung metastatic sites in this patient.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Quinasas Ciclina-Dependientes/genética , Espectrometría de Masas/métodos , Mutación/genética , Proteómica , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Proteínas Mutantes/metabolismo , Metástasis de la Neoplasia , Proteínas de Neoplasias/metabolismo , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Reproducibilidad de los Resultados
3.
Chemistry ; 24(70): 18629-18633, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30284341

RESUMEN

The successful incorporation of a thermally fragile imidazolium moiety into a covalent triazine framework resulted in a heterogeneous organocatalyst active in carbene-catalyzed umpolung reaction. The structural integrity of the imidazolium moiety was confirmed by combining solid-state NMR and XPS experiments.

4.
ACS Omega ; 8(44): 41258-41272, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970056

RESUMEN

In this study, geopolymer originating from locally industrial byproducts as red mud (RM) was successfully prepared in the presence of different loadings of rice husk ash (RHA) used for the adsorption of methylene blue (MB) in wastewater. During geopolymerization, various mixing amounts between RM and RHA were conducted when the weight ratio of binder solution/activated alkali-metal solution (Na2SiO3/ NaOH 7 M) was 2.5 and the curing temperature was set at 60 °C for 24 h. As a result, the surface area value of the prepared geopolymer composited with RHA at 0 and 60% was increased from 19.2 to 29.5 m2/g, while the BJH pore size of the prepared geopolymer was reduced to 6.68 and 5.76 nm, respectively. In the dye removal test, higher additions of RHA in the RM-geopolymer maintained better retention of the MB ion due to the increase in the adsorption binding site. The maximum uptake amount of dyes performed at pH 8 was changed from 6.59 to 10.74 mg/g, while RHA was from 0 to 60% after 180 min of immersion in MB solution. The adsorption isotherms well obeyed the Langmuir model, as the relative coefficient R2 was 0.999. Based on these, the initial agricultural waste as RHA and industrial byproducts as RM were valued as functional materials used for dye treatment in wastewater.

5.
J Dent Sci ; 18(4): 1822-1829, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799859

RESUMEN

Background/purpose: World Health Organization (WHO) oral health survey manual is the main guideline for most oral health surveys worldwide. It has been updated several times since 1971; however, using papers and pens for data recording remains unchanged. This study aimed to develop the Vietnam Oral Survey Electronics Recorder (VOSER) to record dental caries data based on the WHO 2013 criteria and assess its reliability and efficiency. Materials and methods: VOSER was developed and tested for reliability and efficiency by performing clinical examinations on 365 school children in three key indicator age groups: 120 5-year-old students with primary dentition, 123 8-year-old students with mixed dentition, and 122 12-year-old students with permanent dentition. One gold standard examiner and two trained clerks examined these children using either WHO's paper survey form or VOSER's digital form for dental caries. Recording time, spreadsheet time, DMFT/S, and dmft/s were analyzed to compare the efficiency of VOSER to the paper form. Cohen's Kappa, intraclass correlation coefficient, and Wilcoxon signed-rank test were adopted in the data analyses. Results: Median time of using VOSER was significantly shorter than the standard time in all three dentitions (P < 0.001). Cohen's Kappa values between data collected by VOSER and paper form showed almost perfect agreements (0.927-0.958). DMFT/S and dmft/s values calculated from data collected by both methods had good to excellent reliabilities (0.791-0.997). Conclusion: VOSER is efficient and reliable for conducting dental caries surveys according to the WHO 2013 criteria and should be utilized in the era of digital technology.

6.
ACS Omega ; 8(37): 33412-33425, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744831

RESUMEN

Valorization of pineapple peel waste is an attractive research topic because of the huge quantities of this byproduct generated from pineapple processing industries. In this study, the extract from pineapple waste was collected to produce a hydrogel-like form containing bacterial cellulose fibers with a three-dimensional structure and nanoscale diameter by the Acetobacter xylinum fermentation process. The bacterial cellulose suspension was subsequently activated by freeze-drying, affording lightweight aerogels as potential adsorbents in wastewater treatment, in particular the adsorptive removal of organic dyes. Intensive tests were carried out with the adsorption of methylene blue, a typical cationic dye, to investigate the influence of adsorption conditions (temperature, pH, initial dye concentration, time, and experiment scale) and aerogel-preparation parameters (grinding time and bacterial cellulose concentration). The bacterial cellulose-based aerogels exhibited high adsorption capacity not only for methylene blue but also for other cationic dyes, including malachite green, rhodamine B, and crystal violet (28-49 mg/g). However, its activity was limited for most of the anionic dyes, such as methyl orange, sunset yellow, and quinoline yellow, due to the repulsion of these anionic dyes with the aerogel surface, except for the case of congo red. It is also an anionic dye but has two amine groups providing a strong interaction with the hydroxyl group of the aerogel via hydrogen bonding. Indeed, the aerogel has a substantially large congo red-trapping capacity of 101 mg/g. Notably, the adsorption process exhibited similar performances, upscaling the solution volume to 50 times. The utilization of abundant agricultural waste in the simple aerogel preparation to produce a highly efficient and biodegradable adsorbent is the highlight of this work.

7.
Chemosphere ; 308(Pt 2): 136408, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36103922

RESUMEN

Ciprofloxacin antibiotic (CIP) is one of the antibiotics with the highest rate of antibiotic resistance, if used and managed improperly, can have a negative impact on the ecosystem. In this research, ZnO modified g-C3N4 photocatalyst was prepared and applied for the decomposition of CIP antibiotic compounds in water. The removal performance of CIP by using ZnO/g-C3N4 reached 93.8% under pH 8.0 and an increasing amount of catalyst could improve the degradation performance of the pollutant. The modified ZnO/g-C3N4 completely oxidized CIP at a low concentration of 1 mg L-1 and the CIP removal efficiency slightly decreases (around 13%) at a high level of pollutant (20 mg L-1). The degradation rate of CIP by doped sample ZnO/g-C3N4 was 4.9 times faster than that of undoped g-C3N4. The doped catalyst ZnO/g-C3N4 also displayed high reusability for decomposition of CIP with 89.8% efficiency remaining after 3 cycles. The radical species including ·OH, ·O2- and h+ are important in the CIP degradation process. In addition, the proposed mechanism for CIP degradation by visible light-assisted ZnO/g-C3N4 was claimed.


Asunto(s)
Contaminantes Ambientales , Óxido de Zinc , Antibacterianos/química , Catálisis , Ciprofloxacina/química , Ecosistema , Luz , Fotólisis , Agua
8.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201247

RESUMEN

Chitin was chemically extracted from crab shell waste and dissolved in N,N-dimethyl acetamine/5% lithium chloride (DMAc/5% LiCl) at room temperature to obtain 1% and 2% concentrations of chitin solution. Chitin fibers were prepared by phase inversion at different temperatures of water coagulation bath at 5, 20, and 60 °C. The deconvolution of FTIR spectra indicated that the area portion of the intermolecular hydrogen bonding NH…OC increased at 60 °C due to the higher density of the chitin segment in the fiber. As a result, scanning electron microscope (SEM) measurement suggests that a denser structure of the chitin fiber was observed when the temperature of the coagulation bath increased. In addition, the resultant chitin fibers generated better mechanical properties relative to the amount of chitin concentration and temperature. At 2% of chitin solution, the tensile strength significantly increased from 80 to 182 MPa for the fiber obtained at temperatures of 5 and 60 °C of the water coagulation bath, respectively. Meanwhile, the water content in the fiber significantly decreased from 1101% to 335%. This green synthesis route has high potential for the fabrication of the fiber as future material of interest for biomedical application.

9.
Oncogene ; 40(18): 3331-3346, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33850265

RESUMEN

Mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain constitutively activate EGFR resulting in lung tumorigenesis. Activated EGFR modulates downstream signaling by altering phosphorylation-driven interactions that promote growth and survival. Secretory carrier membrane proteins (SCAMPs) are a family of transmembrane proteins that regulate recycling of receptor proteins, including EGFR. The potential role of SCAMPs in mutant EGFR function and tumorigenesis has not been elucidated. Using quantitative mass-spectrometry-based phosphoproteomics, we identified SCAMP3 as a target of mutant EGFRs in lung adenocarcinoma and sought to further investigate the role of SCAMP3 in the regulation of lung tumorigenesis. Here we show that activated EGFR, either directly or indirectly phosphorylates SCAMP3 at Y86 and this phosphorylation increases the interaction of SCAMP3 with both wild-type and mutant EGFRs. SCAMP3 knockdown increases lung adenocarcinoma cell survival and increases xenograft tumor growth in vivo, demonstrating a tumor suppressor role of SCAMP3 in lung tumorigenesis. The tumor suppressor function is a result of SCAMP3 promoting EGFR degradation and attenuating MAP kinase signaling pathways. SCAMP3 knockdown also increases multinucleated cells in culture, suggesting that SCAMP3 is required for efficient cytokinesis. The enhanced growth, increased colony formation, reduced EGFR degradation and multinucleation phenotype of SCAMP3-depleted cells were reversed by re-expression of wild-type SCAMP3, but not SCAMP3 Y86F, suggesting that Y86 phosphorylation is critical for SCAMP3 function. Taken together, the results of this study demonstrate that SCAMP3 functions as a novel tumor suppressor in lung cancer by modulating EGFR signaling and cytokinesis that is partly Y86 phosphorylation-dependent.


Asunto(s)
Adenocarcinoma del Pulmón , Receptores ErbB , Humanos , Fosforilación
10.
Cancer Res ; 81(11): 3051-3066, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33727228

RESUMEN

Lung cancer is the leading cause of cancer mortality worldwide. The treatment of patients with lung cancer harboring mutant EGFR with orally administered EGFR tyrosine kinase inhibitors (TKI) has been a paradigm shift. Osimertinib and rociletinib are third-generation irreversible EGFR TKIs targeting the EGFR T790M mutation. Osimertinib is the current standard of care for patients with EGFR mutations due to increased efficacy, lower side effects, and enhanced brain penetrance. Unfortunately, all patients develop resistance. Genomic approaches have primarily been used to interrogate resistance mechanisms. Here we characterized the proteome and phosphoproteome of a series of isogenic EGFR-mutant lung adenocarcinoma cell lines that are either sensitive or resistant to these drugs, comprising the most comprehensive proteomic dataset resource to date to investigate third generation EGFR TKI resistance in lung adenocarcinoma. Unbiased global quantitative mass spectrometry uncovered alterations in signaling pathways, revealed a proteomic signature of epithelial-mesenchymal transition, and identified kinases and phosphatases with altered expression and phosphorylation in TKI-resistant cells. Decreased tyrosine phosphorylation of key sites in the phosphatase SHP2 suggests its inhibition, resulting in subsequent inhibition of RAS/MAPK and activation of PI3K/AKT pathways. Anticorrelation analyses of this phosphoproteomic dataset with published drug-induced P100 phosphoproteomic datasets from the Library of Integrated Network-Based Cellular Signatures program predicted drugs with the potential to overcome EGFR TKI resistance. The PI3K/MTOR inhibitor dactolisib in combination with osimertinib overcame resistance both in vitro and in vivo. Taken together, this study reveals global proteomic alterations upon third generation EGFR TKI resistance and highlights potential novel approaches to overcome resistance. SIGNIFICANCE: Global quantitative proteomics reveals changes in the proteome and phosphoproteome in lung cancer cells resistant to third generation EGFR TKIs, identifying the PI3K/mTOR inhibitor dactolisib as a potential approach to overcome resistance.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Resistencia a Antineoplásicos , Imidazoles/farmacología , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo , Quinolinas/farmacología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas/química , Fosfoproteínas/análisis , Proteoma/análisis , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Células Tumorales Cultivadas
11.
Sci Rep ; 10(1): 18684, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122754

RESUMEN

Cyclic stretch applied to cells induces the reorganization of stress fibers. However, the correlation between the reorganization of stress fiber subtypes and strain-dependent responses of the cytoplasm and nucleus has remained unclear. Here, we investigated the dynamic involvement of stress fiber subtypes in the orientation and elongation of cyclically stretched epithelial cells. We applied uniaxial cyclic stretches at 5%, 10%, and 15% strains to cells followed by the release of the mechanical stretch. Dorsal, transverse arcs, and peripheral stress fibers were mainly involved in the cytoplasm responses whereas perinuclear cap fibers were associated with the reorientation and elongation of the nucleus. Dorsal stress fibers and transverse arcs rapidly responded within 15 min regardless of the strain magnitude to facilitate the subsequent changes in the orientation and elongation of the cytoplasm. The cyclic stretches induced the additional formation of perinuclear cap fibers and their increased number was almost maintained with a slight decline after 2-h-long stretch release. The slow formation and high stability of perinuclear cap fibers were linked to the slow reorientation kinetics and partial morphology recovery of nucleus in the presence or absence of cyclic stretches. The reorganization of stress fiber subtypes occurred in accordance with the reversible distribution of myosin II. These findings allowed us to propose a model for stretch-induced responses of the cytoplasm and nucleus in epithelial cells based on different mechanoadaptive properties of stress fiber subtypes.


Asunto(s)
Fibras de Estrés/fisiología , Estrés Mecánico , Células A549 , Animales , Elasticidad , Células Epiteliales/citología , Homeostasis , Humanos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA