Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 25(53): 12281-12287, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31292996

RESUMEN

The conversion of renewable plant polyphenol to advanced materials with tailorable properties and various functions is desirable and challenging. In this work, monovalent cation-phenolic crystals contained K+ or Na+ ions were synthesized by using plant polyphenol as an organic source in alkaline solution. The crystal structure was resolved, showing a laminar crystal structure with M+ as connecting nodes. The morphologies (e.g., rod-like and spindle-shaped) and chemical compositions of crystals could be tuned by changing the cations. Interestingly, these polymer crystals exhibited a pH-driven reversible crystal transformation. They transformed into their protonated crystalline form under acidic conditions (e.g., pH 2) and went back to the cation-bound crystalline form in alkaline solutions. Furthermore, the crystals proved excellent antioxidants and heavy metal ion adsorbents.

2.
Adv Mater ; : e1802767, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29989209

RESUMEN

Regenerable, high-efficiency salt sorption materials are highly desirable for water treatment. Here, a thermoresponsive, amphoteric metal-organic framework (MOF) material is reported that can adsorb multiple salts from saline water at room temperature and effectively release the adsorbed salts into water at elevated temperature (e.g., 80 °C). The amphoteric MOF, integrated with both cation-binding carboxylic groups and anion-binding tertiary amine groups, is synthesized by introducing a polymer with tertiary amine groups into the cavities of a water-stable MOF such as MIL-121 with carboxylic groups inside its frameworks. The amphoterized MIL-121 exhibits excellent salt adsorption properties, showing stable adsorption-desorption cycling performances and high LiCl, NaCl, MgCl2 , and CaCl2 adsorption capacities of 0.56, 0.92, 0.25, and 0.39 mmol g-1 , respectively. This work provides a novel, effective strategy for synthesizing new-generation, environmental-friendly, and responsive salt adsorption materials for efficient water desalination and purification.

3.
Biosens Bioelectron ; 77: 372-7, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26433071

RESUMEN

A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 µAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples.


Asunto(s)
Conductometría/instrumentación , Grafito/química , Nanopartículas del Metal/química , Microelectrodos , Nanocompuestos/química , Urea/orina , Cobalto/química , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Humanos , Nanopartículas del Metal/ultraestructura , Níquel/química , Óxidos/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Urinálisis/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA