Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Brain Mapp ; 45(1): e26552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38050776

RESUMEN

Electroencephalography (EEG) microstate analysis has become a popular tool for studying the spatial and temporal dynamics of large-scale electrophysiological activities in the brain in recent years. Four canonical topographies of the electric field (classes A, B, C, and D) have been widely identified, and changes in microstate parameters are associated with several psychiatric disorders and cognitive functions. Recent studies have reported the modulation of EEG microstate by mental workload (MWL). However, the common practice of evaluating MWL is in a specific task. Whether the modulation of microstate by MWL is consistent across different types of tasks is still not clear. Here, we studied the topographies and dynamics of microstate in two independent MWL tasks: NBack and the multi-attribute task battery (MATB) and showed that the modulation of MWL on microstate topographies and parameters depended on tasks. We found that the parameters of microstates A and C, and the topographies of microstates A, B, and D were significantly different between the two tasks. Meanwhile, all four microstate topographies and parameters of microstates A and C were different during the NBack task, but no significant difference was found during the MATB task. Furthermore, we employed a support vector machine recursive feature elimination procedure to investigate whether microstate parameters were suitable for MWL classification. An averaged classification accuracy of 87% for within-task and 78% for cross-task MWL discrimination was achieved with at least 10 features. Collectively, our findings suggest that topographies and parameters of microstates can provide valuable information about neural activity patterns with a dynamic temporal structure at different levels of MWL, but the modulation of MWL depends on tasks and their corresponding functional systems. Moreover, as a potential indicator, microstate parameters could be used to distinguish MWL.


Asunto(s)
Electroencefalografía , Trastornos Mentales , Humanos , Electroencefalografía/métodos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cognición
2.
Environ Sci Technol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319870

RESUMEN

As an emerging type of pollutant, microplastics have become a global environmental problem. Approximately, a fifth of the global burden of type 2 diabetes can be attributed to air particulate pollution. However, scientific knowledge remains limited about the effects of airborne nanoplastics (NPs) exposure on metabolic diseases. In this experiment, a whole-body exposure system was used to simulate the real atmospheric environment, and three exposure concentrations combined with the actual environmental concentration were selected to explore the effects of airborne NPs on metabolic diseases. Based on histological analyses, metabolic studies, gene expression, metabolites, and molecular signaling analyses, mice exposed to airborne NPs were observed to show a phenotype of systemic inflammation and complete insulin resistance featuring excessive drinking and eating, weight loss, elevated blood glucose, and decreased triglyceride levels. After airborne NPs exposure, mice were intolerant to glucose and tolerant to insulin. In addition, airborne NPs exposure could result in long-term irreversible hyperglycemia. Together, the research findings provide a strong basis for understanding the hazards of airborne nanopollution on metabolic disorders.

3.
Cereb Cortex ; 33(23): 11287-11299, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37804238

RESUMEN

In recent years, speech perception research has benefited from low-frequency rhythm entrainment tracking of the speech envelope. However, speech perception is still controversial regarding the role of speech envelope and temporal fine structure, especially in Mandarin. This study aimed to discuss the dependence of Mandarin syllables and tones perception on the speech envelope and the temporal fine structure. We recorded the electroencephalogram (EEG) of the subjects under three acoustic conditions using the sound chimerism analysis, including (i) the original speech, (ii) the speech envelope and the sinusoidal modulation, and (iii) the fine structure of time and the modulation of the non-speech (white noise) sound envelope. We found that syllable perception mainly depended on the speech envelope, while tone perception depended on the temporal fine structure. The delta bands were prominent, and the parietal and prefrontal lobes were the main activated brain areas, regardless of whether syllable or tone perception was involved. Finally, we decoded the spatiotemporal features of Mandarin perception from the microstate sequence. The spatiotemporal feature sequence of the EEG caused by speech material was found to be specific, suggesting a new perspective for the subsequent auditory brain-computer interface. These results provided a new scheme for the coding strategy of new hearing aids for native Mandarin speakers.


Asunto(s)
Percepción del Habla , Humanos , Ruido , Percepción del Timbre , Acústica del Lenguaje , Electroencefalografía , Estimulación Acústica
4.
Methods ; 204: 410-417, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35447360

RESUMEN

The human auditory system extracts valid information in noisy environments while ignoring other distractions, relying primarily on auditory attention. Studies have shown that the cerebral cortex responds differently to the sound source locations and that auditory attention is time-varying. In this work, we proposed a data-driven encoder-decoder architecture model for auditory attention detection (AAD), denoted as AAD-transformer. The model contains temporal self-attention and channel attention modules and could reconstruct the speech envelope by dynamically assigning weights according to the temporal self-attention and channel attention mechanisms of electroencephalogram (EEG). In addition, the model is conducted based on data-driven without additional preprocessing steps. The proposed model was validated using a binaural listening dataset, in which the speech stimulus was Mandarin, and compared with other models. The results showed that the decoding accuracy of the AAD-transformer in the 0.15-second decoding time window was 76.35%, which was much higher than the accuracy of the linear model using temporal response function in the 3-second decoding time window (increased by 16.27%). This work provides a novel auditory attention detection method, and the data-driven characteristic makes it convenient for neural-steered hearing devices, especially those who speak tonal languages.


Asunto(s)
Percepción del Habla , Percepción Auditiva/fisiología , Corteza Cerebral , Electroencefalografía/métodos , Humanos , Habla , Percepción del Habla/fisiología
5.
Chem Eng J ; 418: 129392, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33762883

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 seriously threatens global public health. It has previously been confirmed that SARS-CoV-2 is mainly transmitted between people through "respiratory droplets". Therefore, the respiratory tract mucosa is the first barrier to prevent virus invasion. It is very important to stimulate mucosal immunity to protect the body from respiratory virus infection. Inspired by this, we designed a bionic-virus nanovaccine, which can induce mucosal immunity by nasal delivery to prevent virus infection from respiratory tract. The nanovaccine that mimic virosome is composed of poly(I:C) mimicking viral genetic material as immune adjuvant, biomimetic pulmonary surfactant (bio-PS) liposomes as capsid structure of virus and the receptor binding domains (RBDs) of SARS-CoV-2 as "spike" to completely simulate the structure of the coronavirus. The nanovaccine can be administered by inhaling to imitate the process of SARS-CoV-2 infection through the respiratory tract. Our results demonstrated that the inhalable nanovaccine with bionic virus-like structure has a stronger mucosal protective effect than routine muscle and subcutaneous inoculation. In particular, high titer of secretory immunoglobulin A (sIgA) was detected in respiratory secretions, which effectively neutralize the virus and prevent it from entering the body through the respiratory tract. Through imitating the structure and route of infection, this inhalable nanovaccine strategy might inspire a new approach to the precaution of respiratory viruses.

7.
J Acoust Soc Am ; 142(2): 666, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28863604

RESUMEN

An efficient way of describing the linear micromechanical response of the cochlea is in terms of its poles and zeros. Pole-zero models with local scaling symmetry are derived for both one and two degree-of-freedom micromechanical systems. These elements are then used in a model of the coupled cochlea, which is optimised to minimise the mean square difference between its frequency response and that measured on the basilar membrane inside the mouse cochlea by Lee, Raphael, Xia, Kim, Grillet, Applegate, Ellerbee Bowden, and Oghalai [(2016) J. Neurosci. 36, 8160-8173] and Oghalai Lab [(2015). https://oghalailab.stanford.edu], at different excitation levels. A model with two degree-of-freedom micromechanics generally fits the measurements better than a model with single degree-of-freedom micromechanics, particularly at low excitations where the cochlea is active, except post-mortem conditions, when the cochlea is passive. The model with the best overall fit to the data is found to be one with two degree-of-freedom micromechanics and 3D fluid coupling. Although a unique lumped parameter network cannot be inferred from such a pole-zero description, these fitted results help indicate what properties such a network should have.


Asunto(s)
Cóclea/fisiología , Audición , Mecanotransducción Celular , Modelos Teóricos , Sonido , Estimulación Acústica , Animales , Cóclea/anatomía & histología , Modelos Lineales , Ratones , Movimiento (Física) , Presión
8.
J Acoust Soc Am ; 141(3): 1793, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28372063

RESUMEN

A box shape with constant area is often used to represent the complex geometry in the cochlea, although variation of the fluid chambers areas is known to be more complicated. This variation is accounted for here by an "effective area," given by the harmonic mean of upper and lower chamber area from previous measurements. The square root of this effective area varies linearly along the cochleae in the investigated mammalian species. This suggests the use of a linearly tapered box model in which the fluid chamber width and height are equal, but decrease linearly along its length. The basilar membrane (BM) width is assumed to increase linearly along the model. An analytic form of the far-field fluid pressure difference due to BM motion is derived for this tapered model. The distributions of the passive BM response are calculated using both the tapered and uniform models and compared with human and mouse measurements. The discrepancy between the models is frequency-dependent and becomes small at low frequencies. The tapered model developed here shows a reasonable fit to experimental measurements, when the cochleae are cadaver or driven at high sound pressure level, and provides a convenient way to incorporate cochlear geometrical variations.


Asunto(s)
Cóclea/fisiología , Audición , Modelos Biológicos , Estimulación Acústica , Animales , Gatos , Chinchilla , Cóclea/anatomía & histología , Simulación por Computador , Cobayas , Humanos , Mecanotransducción Celular , Ratones , Movimiento (Física) , Sonido , Especificidad de la Especie
9.
J Acoust Soc Am ; 140(4): 2769, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27794298

RESUMEN

The operation of each hair cell within the cochlea generates a change in electrical potential at the frequency of the vibrating basilar membrane beneath the hair cell. This electrical potential influences the operation of the cochlea at nearby locations and can also be detected as the cochlear microphonic signal. The effect of such potentials has been proposed as a mechanism for the non-local operation of the cochlear amplifier, and the interaction of such potentials has been thought to be the cause of the broadness of cochlea microphonic tuning curves. The spatial extent of influence of these potentials is an important parameter for determining the significance of their effects. Calculations of this extent have typically been based on calculating the longitudinal resistance of each of the scalae from the scala cross sectional area, and the conductivity of the lymph. In this paper, the range of influence of the electrical potential is examined using an electrical finite element model. It is found that the range of influence of the hair cell potential is much shorter than the conventional calculation, but is consistent with recent measurements.


Asunto(s)
Cóclea , Membrana Basilar , Potenciales Microfónicos de la Cóclea , Análisis de Elementos Finitos , Células Ciliadas Auditivas
10.
J Acoust Soc Am ; 137(3): 1309-17, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25786944

RESUMEN

As well as generating the far field pressure, which allows wave propagation in the cochlea, the vibration of an individual element of the basilar membrane (BM) will also generate a near field pressure, which increases its mass and gives rise to local longitudinal coupling. This paper compares the efficiency and accuracy of a number of different methods of calculating the near field pressure distribution, and explores the connections between them. In particular it is shown that a common approximation to the wavenumber description of the near field pressure is equivalent, in the spatial domain, to an exponential decay away from the point of excitation. Two important properties of the near field pressure are its maximum amplitude, which is finite if the vibrating element has a finite length, and the value of its spatial integral, which determines the added mass on the BM due to the fluid loading. These properties are calculated as a function of the BM width relative to the width of the fluid chamber. By parameterizing the near field pressure variation in this way, it can be readily incorporated into coupled models of the cochlea, without the considerable computational expense of calculating the full three dimensional pressure field.


Asunto(s)
Cóclea/fisiología , Audición , Mecanotransducción Celular , Fluidez de la Membrana , Modelos Biológicos , Estimulación Acústica , Animales , Membrana Basilar/fisiología , Simulación por Computador , Análisis de Elementos Finitos , Análisis de Fourier , Humanos , Movimiento , Presión , Vibración
11.
Hear Res ; 442: 108946, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150794

RESUMEN

Sound source localization in "cocktail-party" situations is a remarkable ability of the human auditory system. However, the neural mechanisms underlying auditory spatial attention are still largely unknown. In this study, the "cocktail-party" situations are simulated through multiple sound sources and presented through head-related transfer functions and headphones. Furthermore, the scalp time-varying network of auditory spatial attention is constructed using the high-temporal resolution electroencephalogram, and its network properties are measured quantitatively using graph theory analysis. The results show that the time-varying network of auditory spatial attention in "cocktail-party" situations is more complex and partially different than in simple acoustic situations, especially in the early- and middle-latency periods. The network coupling strength increases continuously over time, and the network hub shifts from the posterior temporal lobe to the parietal lobe and then to the frontal lobe region. In addition, the right hemisphere has a stronger network strength for processing auditory spatial information in "cocktail-party" situations, i.e., the right hemisphere has higher clustering levels, higher transmission efficiency, and more node degrees during the early- and middle-latency periods, while this phenomenon disappears and appears symmetrically during the late-latency period. These findings reveal different network patterns and properties of auditory spatial attention in "cocktail-party" situations during different periods and demonstrate the dominance of the right hemisphere in the dynamic processing of auditory spatial information.


Asunto(s)
Cuero Cabelludo , Localización de Sonidos , Humanos , Estimulación Acústica/métodos , Lóbulo Temporal , Atención , Percepción Auditiva
12.
Ann N Y Acad Sci ; 1536(1): 167-176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829709

RESUMEN

Time discrimination, a critical aspect of auditory perception, is influenced by numerous factors. Previous research has suggested that musical experience can restructure the brain, thereby enhancing time discrimination. However, this phenomenon remains underexplored. In this study, we seek to elucidate the enhancing effect of musical experience on time discrimination, utilizing both behavioral and electroencephalogram methodologies. Additionally, we aim to explore, through brain connectivity analysis, the role of increased connectivity in brain regions associated with auditory perception as a potential contributory factor to time discrimination induced by musical experience. The results show that the music-experienced group demonstrated higher behavioral accuracy, shorter reaction time, and shorter P3 and mismatch response latencies as compared to the control group. Furthermore, the music-experienced group had higher connectivity in the left temporal lobe. In summary, our research underscores the positive impact of musical experience on time discrimination and suggests that enhanced connectivity in brain regions linked to auditory perception may be responsible for this enhancement.


Asunto(s)
Percepción Auditiva , Electroencefalografía , Música , Humanos , Música/psicología , Masculino , Percepción Auditiva/fisiología , Femenino , Adulto , Adulto Joven , Percepción del Tiempo/fisiología , Tiempo de Reacción/fisiología , Estimulación Acústica/métodos , Discriminación en Psicología/fisiología , Potenciales Evocados Auditivos/fisiología , Encéfalo/fisiología
13.
Geroscience ; 46(1): 431-446, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37273160

RESUMEN

Age-Related Hearing Loss (ARHL) is a common problem in aging. Numerous longitudinal cohort studies have revealed that ARHL is closely related to cognitive function, leading to a significant risk of cognitive decline and dementia. This risk gradually increases with the severity of hearing loss. We designed dual auditory Oddball and cognitive task paradigms for the ARHL subjects, then obtained the Montreal Cognitive Assessment (MoCA) scale evaluation results for all the subjects. Multi-dimensional EEG characteristics helped explore potential biomarkers to evaluate the cognitive level of the ARHL group, having a significantly lower P300 peak amplitude coupled with a prolonged latency. Moreover, visual memory, auditory memory, and logical calculation were investigated during the cognitive task paradigm. In the ARHL groups, the alpha-to-beta rhythm energy ratio in the visual and auditory memory retention period and the wavelet packet entropy value within the logical calculation period were significantly reduced. Correlation analysis between the above specificity indicators and the subjective scale results of the ARHL group revealed that the auditory P300 component characteristics could assess attention resources and information processing speed. The alpha and beta rhythm energy ratio and wavelet packet entropy can become potential indicators to determine working memory and logical cognitive computation-related cognitive ability.


Asunto(s)
Disfunción Cognitiva , Presbiacusia , Humanos , Estudios Longitudinales , Cognición , Presbiacusia/psicología , Disfunción Cognitiva/diagnóstico , Electroencefalografía
14.
J Acoust Soc Am ; 133(3): EL181-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23464126

RESUMEN

The effects of different radial distributions of basilar membrane velocity on the fluid coupling in the cochlea are studied. Different mode shapes across the width of the basilar membrane, modeled as a beam, are simulated by assuming various boundary conditions. The results suggest that the fluid coupling is insensitive to the resulting differences in mode shape. This validates the assumption commonly made in cochlear models that the fluid coupling can be reasonably well predicted by assuming a single modal shape across the basilar membrane width, even if the exact form of the radial profile is not known.


Asunto(s)
Membrana Basilar/fisiología , Cóclea/fisiología , Mecanotransducción Celular , Animales , Simulación por Computador , Humanos , Modelos Biológicos , Movimiento (Física) , Presión , Reproducibilidad de los Resultados , Sonido , Factores de Tiempo
15.
J Acoust Soc Am ; 133(3): 1535-45, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23464024

RESUMEN

Current models of the cochlea can be characterized as being either based on the assumed propagation of a single slow wave, which provides good insight, or involve the solution of a numerical model, such as in the finite element method, which allows the incorporation of more detailed anatomical features. In this paper it is shown how the wave finite element method can be used to decompose the results of a finite element calculation in terms of wave components, which allows the insight of the wave approach to be brought to bear on more complicated numerical models. In order to illustrate the method, a simple box model is considered, of a passive, locally reacting, basilar membrane interacting via three-dimensional fluid coupling. An analytic formulation of the dispersion equation is used initially to illustrate the types of wave one would expect in such a model. The wave finite element is then used to calculate the wavenumbers of all the waves in the finite element model. It is shown that only a single wave type dominates the response until this peaks at the best place in the cochlea, where an evanescent, higher order fluid wave can make a significant contribution.


Asunto(s)
Cóclea/fisiología , Análisis de Elementos Finitos , Mecanotransducción Celular , Modelos Biológicos , Estimulación Acústica , Cóclea/anatomía & histología , Simulación por Computador , Elasticidad , Humanos , Movimiento (Física) , Análisis Numérico Asistido por Computador , Presión , Factores de Tiempo
16.
Front Cardiovasc Med ; 10: 1173769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485276

RESUMEN

Objective: In this study, we aimed to investigate the classification of symptomatic plaques by evaluating the models generated via two different approaches, a radiomics-based machine learning (ML) approach, and an end-to-end learning approach which utilized deep learning (DL) techniques with several representative model frameworks. Methods: We collected high-resolution magnetic resonance imaging (HRMRI) data from 104 patients with carotid artery stenosis, who were diagnosed with either symptomatic plaques (SPs) or asymptomatic plaques (ASPs), in two medical centers. 74 patients were diagnosed with SPs and 30 patients were ASPs. Sampling Perfection with Application-optimized Contrasts (SPACE) by using different flip angle Evolutions was used for MRI imaging. Repeated stratified five-fold cross-validation was used to evaluate the accuracy and receiver operating characteristic (ROC) of the trained classifier. The two proposed approaches were investigated to train the models separately. The difference in the model performance of the two proposed methods was quantitatively evaluated to find a better model to differentiate between SPs and ASPs. Results: 3D-SE-Densenet-121 model showed the best performance among all prediction models (AUC, accuracy, precision, sensitivity, and F1-score of 0.9300, 0.9308, 0.9008, 0.8588, and 0.8614, respectively), which were 0.0689, 0.1119, 0.1043, 0.0805, and 0.1089 higher than the best radiomics-based ML model (MLP). Decision curve analysis showed that the 3D-SE-Densenet-121 model delivered more net benefit than the best radiomics-based ML model (MLP) with a wider threshold probability. Conclusion: The DL models were able to accurately differentiate between symptomatic and asymptomatic carotid plaques with limited data, which outperformed radiomics-based ML models in identifying symptomatic plaques.

17.
Acta Otolaryngol ; 143(9): 759-765, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37782330

RESUMEN

BACKGROUND: The etiology of Ménière's disease (MD) is still not completely clear, but it is believed to be associated with endolymphatic hydrops (EH), which is characterized by auditory functional disorders. Vasopressin injection in C57BL/6J mice can induce EH and serve as a model for MD. Optical Coherence Tomography (OCT) has shown its advantages as a non-invasive imaging method for observing EH.AimInvestigating the relationship between hearing loss and EH to assist clinical hearing assessments and indicate the severity of hydrops. METHODS: C57BL/6J mice received 50 µg/100g/day vasopressin injections to induce EH. Auditory function was assessed using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). OCT was used to visualize the cochlea. RESULT: OCT observed accumulation of fluid within the scala media in the cochlear apex. ABR showed significant hearing loss after 4 weeks. DPOAE revealed low-frequency hearing loss at 2 weeks and widespread damage across frequencies at 4 weeks. CONCLUSION: The development of hearing loss in mouse models of MD is consistent with EH manifestations.SignificanceThis study demonstrates the possibility of indirectly evaluating the extent of EH through auditory assessment and emphasizes the significant value of OCT for imaging cochlear structures.


Asunto(s)
Sordera , Hidropesía Endolinfática , Pérdida Auditiva , Enfermedad de Meniere , Animales , Ratones , Tomografía de Coherencia Óptica , Ratones Endogámicos C57BL , Hidropesía Endolinfática/complicaciones , Hidropesía Endolinfática/diagnóstico por imagen , Enfermedad de Meniere/complicaciones , Enfermedad de Meniere/diagnóstico por imagen , Pérdida Auditiva/etiología , Pérdida Auditiva/complicaciones , Sordera/complicaciones , Vasopresinas , Imagen por Resonancia Magnética/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-37721877

RESUMEN

Stroke often leads to permanent impairment in motor function. Accurate and quantitative prognosis of potential motor recovery before rehabilitation intervention can help healthcare centers improve resources organization and enable individualized intervention. The context of this paper investigated the potential of using electroencephalography (EEG) functional connectivity (FC) measures as biomarkers for assessing and prognosing improvement of Fugl-Meyer Assessment in upper extremity motor function ( ∆FMU) among participants with chronic stroke. EEG data from resting and motor imagery task were recorded from 13 participants with chronic stroke. Three functional connectivity methods, which were Pearson correlation measure (PCM), weighted Phase Lag Index (wPLI) and phase synchronization index (PSI), were investigated, under three regions of interest (inter-hemispheric, intra-hemispheric, and whole-brain), in two statues (resting and motor imagery), with 15 refined center frequencies. We applied correlation analysis to identify the optimal center frequencies and pairs of synchronized channels that were consistently associated with ∆FMU . Predictive models were generated using regression analysis algorithms based on optimized center frequencies and channel pairs identified from the proposed analysis method, with leave-one-out cross-validation. We found that PSI in the Alpha band (with center frequency of 9Hz) was the most sensitive FC measures for prognosing motor recovery. Strong and significant correlations were identified between the predictions and actual ∆FMU scores both in the resting state ( [Formula: see text], [Formula: see text], N=13) and motor imagery ( [Formula: see text], [Formula: see text], N=13). Our results suggested that EEG connectivity measured with PSI in resting state could be a promising biomarker for quantifying motor recovery before motor rehabilitation intervention.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Electroencefalografía/métodos , Encéfalo , Pronóstico , Recuperación de la Función
19.
Front Neurol ; 14: 1126214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908620

RESUMEN

Introduction: The vestibular system is responsible for motion perception and balance preservation in the body. The vestibular function examination is useful for determining the cause of associated symptoms, diagnosis, and therapy of the patients. The associated cerebral cortex processes and integrates information and is the ultimate perceptual site for vestibular-related symptoms. In recent clinical examinations, less consideration has been given to the cortex associated with the vestibular system. As a result, it is crucial to increase focus on the expression of the cortical level while evaluating vestibular function. From the viewpoint of neuroelectrophysiology, electroencephalograms (EEG) can enhance the assessments of vestibular function at the cortex level. Methods: This study recorded nystagmus and EEG data throughout the caloric test. Four phases were considered according to the vestibular activation status: before activation, activation, fixation suppression, and recovery. In different phases, the distribution and changes of the relative power of the EEG rhythms (delta, theta, alpha, and beta) were analyzed, and the correlation between EEG characteristics and nystagmus was also investigated. Results: The results showed that, when the vestibule was activated, the alpha power of the occipital region increased, and the beta power of the central and top regions and the occipital region on the left decreased. The changes in the alpha and beta rhythms significantly correlate with nystagmus values in left warm stimulation. Discussion: Our findings offer a fresh perspective on cortical electrophysiology for the assessment of vestibular function by demonstrating that the relative power change in EEG rhythms can be used to assess vestibular function.

20.
Nat Commun ; 14(1): 5140, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612298

RESUMEN

The exogenous excitation requirement and electron-hole recombination are the key elements limiting the application of catalytic therapies. Here a tumor microenvironment (TME)-specific self-triggered thermoelectric nanoheterojunction (Bi0.5Sb1.5Te3/CaO2 nanosheets, BST/CaO2 NSs) with self-built-in electric field facilitated charge separation is fabricated. Upon exposure to TME, the CaO2 coating undergoes rapid hydrolysis, releasing Ca2+, H2O2, and heat. The resulting temperature difference on the BST NSs initiates a thermoelectric effect, driving reactive oxygen species production. H2O2 not only serves as a substrate supplement for ROS generation but also dysregulates Ca2+ channels, preventing Ca2+ efflux. This further exacerbates calcium overload-mediated therapy. Additionally, Ca2+ promotes DC maturation and tumor antigen presentation, facilitating immunotherapy. It is worth noting that the CaO2 NP coating hydrolyzes very slowly in normal cells, releasing Ca2+ and O2 without causing any adverse effects. Tumor-specific self-triggered thermoelectric nanoheterojunction combined catalytic therapy, ion interference therapy, and immunotherapy exhibit excellent antitumor performance in female mice.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Femenino , Animales , Ratones , Inmunoterapia , Neoplasias/terapia , Presentación de Antígeno , Transporte Biológico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA