Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 464(7293): 1324-8, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20428166

RESUMEN

Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range and spatially anisotropic. This is in stark contrast to the much studied dilute gases of ultracold atoms, which have isotropic and extremely short-range (or 'contact') interactions. Furthermore, the large electric dipole moment of polar molecules can be tuned using an external electric field; this has a range of applications such as the control of ultracold chemical reactions, the design of a platform for quantum information processing and the realization of novel quantum many-body systems. Despite intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here we report the experimental observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a pronounced increase in the loss rate of fermionic potassium-rubidium molecules due to ultracold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood in a relatively simple model based on quantum threshold laws for the scattering of fermionic polar molecules. In addition, we directly observe the spatial anisotropy of the dipolar interaction through measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules. Furthermore, the large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive, 'head-to-tail', dipolar interactions.

2.
Opt Express ; 20(4): 3586-612, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22418119

RESUMEN

Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.

3.
Phys Rev Lett ; 108(21): 214302, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003262

RESUMEN

The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and for observing quantum behavior. Here, we demonstrate a technique to push the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen or trap a particular motional mode. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly lossless optical potential, thereby strongly diluting the effect of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Q=5.8(1.1)×10(5), representing more than an order of magnitude improvement over the conventional limits of SiO2 for this geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems.

4.
Phys Rev Lett ; 104(3): 030402, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20366634

RESUMEN

We report the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state. This addresses the last internal degree of freedom remaining after the recent production of a near quantum degenerate gas of molecules in their rovibronic ground state, and provides a crucial step towards full control over molecular quantum gases. We demonstrate a scheme that is general for bialkali polar molecules and allows the preparation of molecules in a single hyperfine state or in an arbitrary coherent superposition of hyperfine states. The scheme relies on electric-dipole, two-photon microwave transitions through rotationally excited states and makes use of electric nuclear quadrupole interactions to transfer molecular population between different hyperfine states.

5.
Phys Chem Chem Phys ; 11(42): 9626-39, 2009 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19851539

RESUMEN

Ultracold polar molecular gases promise new directions and exciting applications in collisions and chemical reactions at ultralow energies, precision measurements, novel quantum phase transitions, and quantum information science. Here we briefly discuss key experimental requirements for observing strong dipole-dipole interactions in an ultracold dipolar gas of molecules. We then survey current experimental progress in the field with a focus on our recent work creating a near quantum degenerate gas of KRb polar molecules [Ni et al., Science, 2008, 322, 231].

6.
Science ; 366(6469): 1111-1115, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31780555

RESUMEN

Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. In this study, we took the contrasting approach of prolonging the lifetime of an intermediate by preparing reactant molecules in their lowest rovibronic quantum state at ultralow temperatures, thereby markedly reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium (KRb) molecules at a temperature of 500 nanokelvin, we directly observed reactants, intermediates, and products of the reaction 40K87Rb + 40K87Rb → K2Rb2* → K2 + Rb2 Beyond observation of a long-lived, energy-rich intermediate complex, this technique opens the door to further studies of quantum-state-resolved reaction dynamics in the ultracold regime.

7.
Science ; 360(6391): 900-903, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29650700

RESUMEN

Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

8.
Science ; 342(6163): 1220-2, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24311686

RESUMEN

Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in (180)Hf(19)F(+) with a coherence time of 100 milliseconds. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.

9.
Science ; 327(5967): 853-7, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20150499

RESUMEN

How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single partial-wave scattering, and quantum threshold laws provide a clear understanding of the molecular reactivity under a vanishing collision energy? Starting with an optically trapped near-quantum-degenerate gas of polar 40K87Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions. When these fermionic molecules were prepared in a single quantum state at a temperature of a few hundred nanokelvin, we observed p-wave-dominated quantum threshold collisions arising from tunneling through an angular momentum barrier followed by a short-range chemical reaction with a probability near unity. When these molecules were prepared in two different internal states or when molecules and atoms were brought together, the reaction rates were enhanced by a factor of 10 to 100 as a result of s-wave scattering, which does not have a centrifugal barrier. The measured rates agree with predicted universal loss rates related to the two-body van der Waals length.

10.
Faraday Discuss ; 142: 351-9; discussion 429-61, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20151553

RESUMEN

We report the creation and characterization of a near quantum-degenerate gas of polar 40K-87Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise control of the molecular electronic, vibrational, and rotational degrees of freedom with phase-coherent laser fields. In particular, we coherently transfer these weakly bound molecules across a 125 THz frequency gap in a single step into the absolute rovibrational ground state of the electronic ground potential. Phase coherence between lasers involved in the transfer process is ensured by referencing the lasers to two single components of a phase-stabilized optical frequency comb. Using these methods, we prepare a dense gas of 4 x 10(4) polar molecules at a temperature below 400 nK. This fermionic molecular ensemble is close to quantum degeneracy and can be characterized by a degeneracy parameter of T/T(F) = 3. We have measured the molecular polarizability in an optical dipole trap where the trap lifetime gives clues to interesting decay mechanisms. Given the large measured dipole moment of the KRb molecules of 0.5 Debye, the study of quantum degenerate molecular gases interacting via strong dipolar interactions is now within experimental reach. PACS numbers: 37.10.Mn, 37.10.Pq.

11.
Phys Rev Lett ; 100(14): 143201, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18518030

RESUMEN

Using a Feshbach resonance, we create ultracold fermionic molecules starting from a Bose-Fermi atom gas mixture. The resulting mixture of atoms and weakly bound molecules provides a rich system for studying few-body collisions because of the variety of atomic collision partners for molecules; either bosonic, fermionic, or distinguishable atoms. Inelastic loss of the molecules near the Feshbach resonance is dramatically affected by the quantum statistics of the colliding particles and the scattering length. In particular, we observe a molecule lifetime as long as 100 ms near the Feshbach resonance.

12.
Science ; 322(5899): 231-5, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18801969

RESUMEN

A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA