Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Liposome Res ; 31(3): 267-278, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32757676

RESUMEN

Osthole (Ost) is a coumarin compound and a potential drug for Alzheimer's disease (AD). However, the effectiveness of Ost is limited by solubility, bioavailability, and low permeability of the blood-brain barrier. In this study, we constructed Ost liposomes with modified CXCR4 on the surface (CXCR4-Ost-Lips), and investigated the intracellular distribution of liposomes in APP-SH-SY5Y cells. In addition, the neuroprotective effect of CXCR4-Ost-Lips was examined in vitro and in vivo. The results showed that CXCR4-Ost-Lips increased intracellular uptake by APP-SH-SY5Y cells and exerted a cytoprotective effect in vitro. The results of Ost brain distribution showed that CXCR4-Ost-Lips prolonged the cycle time of mice and increased the accumulation of Ost in the brain. In addition, CXCR4-Ost-Lips enhanced the effect of Ost in relieving AD-related pathologies. These results indicate that CXCR4-modified liposomes are a potential Ost carrier to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Encéfalo , Cumarinas , Liposomas , Ratones
2.
Int J Nanomedicine ; 15: 2841-2858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425521

RESUMEN

INTRODUCTION: Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aß oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. METHODS: Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. RESULTS: In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. CONCLUSION: Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Barrera Hematoencefálica/efectos de los fármacos , Cumarinas/farmacología , Liposomas/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Línea Celular , Cumarinas/química , Cumarinas/farmacocinética , Humanos , Liposomas/química , Liposomas/farmacocinética , Ratones Transgénicos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacocinética , Polietilenglicoles/química , Presenilina-1/genética , Ratas Sprague-Dawley , Distribución Tisular , Transferrina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA