RESUMEN
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation are believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study (GWAS) in healthy individuals in relation to occupational and smoking-related exposure compared to non-exposed referents. The associations (at p<10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
RESUMEN
Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults worldwide. Although genome-wide association studies (GWAS) have uncovered the germline genetic component underlying CLL susceptibility, the potential use of GWAS-identified risk variants to predict disease progression and patient survival remains unexplored. Here, we evaluated whether 41 GWAS-identified risk variants for CLL could influence overall survival (OS) and disease progression, defined as time to first treatment (TTFT) in a cohort of 1039 CLL cases ascertained through the CRuCIAL consortium. Although this is the largest study assessing the effect of GWAS-identified susceptibility variants for CLL on OS, we only found a weak association of ten single nucleotide polymorphisms (SNPs) with OS (p < 0.05) that did not remain significant after correction for multiple testing. In line with these results, polygenic risk scores (PRSs) built with these SNPs in the CRuCIAL cohort showed a modest association with OS and a low capacity to predict patient survival, with an area under the receiver operating characteristic curve (AUROC) of 0.57. Similarly, seven SNPs were associated with TTFT (p < 0.05); however, these did not reach the multiple testing significance threshold, and the meta-analysis with previous published data did not confirm any of the associations. As expected, PRSs built with these SNPs showed reduced accuracy in prediction of disease progression (AUROC = 0.62). These results suggest that susceptibility variants for CLL do not impact overall survival and disease progression in CLL patients.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Adulto , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVE: The study was aimed to investigate the association among emotion regulation, optimism and quality of life among gastric ulcer patients. METHODS: The Cross-sectional study was conducted in public sector hospitals of Lahore, during January-June 2017. Sample of study was comprised of 100 patients diagnosed with gastric ulcer, aged 25-55 years, selected through non-probability purposive sampling technique. Demographic information sheet, Emotion Regulation Scale by John, Gross 2003, Life Orientation Test-Revised by Sheer, Carver 2002, Quality of Life Enjoyment and Satisfaction Questionnaire by Endicott 1993 were used for data collection. SPSS 21 version was used for data analysis. RESULTS: Out of total 100 participants 41 (41%) were men and 59 (59%) were women, with mean age of (M= 44.89, SD= 7.99). There was significant positive correlation among emotion regulation, optimism and quality of life (p<0.01). Optimism and emotion regulation were observed as significant predictors of quality of life (p<0.01). Significant gender differences were found in emotion regulation (p< 0.01), optimism (p< 0.01) and quality of life (p<0.01), with men scoring higher as compared to women. One way ANOVA showed significant differences between emotion regulation, optimism and quality of life among different age groups of gastric ulcer patients (p< 0.01). CONCLUSION: Quality of life of gastric ulcer patients can be greatly improved by effectively using emotion regulation strategies and optimistic approach.
RESUMEN
OBJECTIVE: The main objective of this study was to explore the impact of hearing impairment on psychological distress and subjective well-being in older adults with hearing impairment. METHODS: The study with cross sectional research design was conducted in three public sector hospitals of Lahore, from February 2017 to June 2017. Participants of the study were adults aged 50-90 years and with hearing impairment, selected through non-probability sampling technique. Demographic Information sheet, Kessler psychological distress scale by Kessler, Mroczek. in 1992 and Satisfaction with life scale by Diener, Emmons, Larsen, Griffin in 1985 were used for data collection. SPSS 21 was used to analyze the data. RESULTS: There were 200 participants with age ranged from 53 to 89 years (M= 65.92, SD= 9.70). Of the total, 100 (50%) subjects were men and 100 (50%) were women. Significant gender differences were found in psychological distress, with men reflecting more symptoms of psychological distress (p<0.01), whereas non-significant gender differences were found in case of subjective well-being (p>0.05). Moreover, psychological distress was observed as a predictor of subjective well-being (p<0.01). One-way analysis of variance revealed insignificant differences of psychological distress and subjective well-being across three levels of hearing impairment. CONCLUSION: Early diagnosis and rehabilitation of age-related hearing loss improves the overall quality of life of older adults living with hearing impairment.
RESUMEN
Non-specific structural chromosomal aberrations (CAs) observed in peripheral blood lymphocytes of healthy individuals can be either chromosome-type aberrations (CSAs) or chromatid-type aberrations (CTAs) depending on the stage of cell division they are induced in and mechanism of formation. It is important to study the genetic basis of chromosomal instability as it is a marker of genotoxic exposure and a predictor of cancer risk. For that purpose, we conducted two genome-wide association studies (GWASs) on healthy individuals in the presence and absence of apparent genotoxic exposure from the Czech Republic and Slovakia. The pre-GWAS cytogenetic analysis reported the frequencies of CSA, CTA and total CA (CAtot). We performed both linear and binary logistic regression analysis with an arbitrary cut-off point of 2% for CAtot and 1% for CSA and CTA. Using the statistical threshold of 1.0 × 10-5, we identified five loci with in silico predicted functionality in the reference group and four loci in the exposed group, with no overlap between the associated regions. A meta-analysis on the two GWASs identified further four loci with moderate associations in each of the studies. From the reference group mainly loci within genes related to DNA damage response/repair were identified. Other loci identified from both the reference and exposed groups were found to be involved in the segregation of chromosomes and chromatin modification. Some of the discovered regions in each group were implicated in tumourigenesis and autism.
Asunto(s)
Aberraciones Cromosómicas/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Frecuencia de los Genes , Genética de Población , Mutágenos/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Análisis Citogenético , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Adulto JovenRESUMEN
Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are closely related diseases associated with smoking history and dysregulated immune response. However, not all smokers develop the disease, indicating that genetic susceptibility could be important. Therefore, the aim of this study was to search for the potential overlapping genetic biomarkers, with a focus on single nucleotide polymorphisms (SNPs) located in the regulatory regions of immune-related genes. Additionally, the aim was to see if an identified SNP has potentially an effect on proinflamma-tory cytokine concentration in the serum of COPD patients. We extracted summary data of variants in 1511 immune-related genes from COPD and LC genome-wide association studies (GWAS) from the UK Biobank. The LC data had 203 cases, patients diagnosed with LC, and 360 938 controls, while COPD data had 1 897 cases and 359 297 controls. Assuming 1 association/gene, SNPs with a p-value < 3.3 × 10-5 were considered statistically significantly associated with the disease. We identified seven SNPs located in different genes (BAG6, BTNL2, TNF, HCP5, MICB, NCR3, ABCF1, TCF7L1) to be associated with the COPD risk and two with the LC risk (HLA-C, HLA-B), with statistical significance. We also identified two SNPs located in the IL2RA gene associated with LC (rs2386841; p = 1.86 × 10-4) and COPD (rs11256442; p = 9.79 × 10-3) but with lower significance. Functional studies conducted on COPD patients showed that RNA expression of IL2RA, IFNγ and related proinflammatory cytokines in blood serum did not correlate with a specific genotype. Although results presented in this study do not fully support our hypothesis, it is worth to mention that the identified genes/SNPs that were associated with either COPD or LC risk, all were involved in the activation of the NF-κB transcription factor which is closely related to the regulation of the inflammatory response, a condition associated with both pathologies.
Asunto(s)
Neoplasias Pulmonares , FN-kappa B , Humanos , Estudio de Asociación del Genoma Completo , Genotipo , Citocinas , Células Germinativas , Transportadoras de Casetes de Unión a ATP , Butirofilinas , Chaperonas MolecularesRESUMEN
Multiple myeloma (MM) is a plasma cell malignancy whereby a single clone of plasma cells over-propagates in the bone marrow, resulting in the increased production of monoclonal immunoglobulin. While the complex genetic architecture of MM is well characterized, much less is known about germline variants predisposing to MM. Genome-wide sequencing approaches in MM families have started to identify rare high-penetrance coding risk alleles. In addition, genome-wide association studies have discovered several common low-penetrance risk alleles, which are mainly located in the non-coding genome. Here, we further explored the genetic basis in familial MM within the non-coding genome in whole-genome sequencing data. We prioritized and characterized 150 upstream, 5' untranslated region (UTR) and 3' UTR variants from 14 MM families, including 20 top-scoring variants. These variants confirmed previously implicated biological pathways in MM development. Most importantly, protein network and pathway enrichment analyses also identified 10 genes involved in mitogen-activated protein kinase (MAPK) signaling pathways, which have previously been established as important MM pathways.
Asunto(s)
Estudio de Asociación del Genoma Completo , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Sistema de Señalización de MAP Quinasas , Secuenciación Completa del Genoma , Mutación de Línea GerminalRESUMEN
Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
Asunto(s)
Aberraciones Cromosómicas , Reparación del ADN/genética , No Fumadores , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Simulación por Computador , República Checa , Reparación de la Incompatibilidad de ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Estudio de Asociación del Genoma Completo , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Poli(ADP-Ribosa) Polimerasas/genética , RecQ Helicasas/genética , Proteína de Replicación A/genética , Eslovaquia , Helicasa del Síndrome de Werner/genética , Población Blanca/genética , Adulto JovenRESUMEN
DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.
RESUMEN
Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.
Asunto(s)
Aberraciones Cromosómicas , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Polimorfismo de Nucleótido Simple , Adulto , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Estudios de Cohortes , Ciclina B1/genética , Quinasas Ciclina-Dependientes/genética , Femenino , Frecuencia de los Genes , Humanos , Modelos Lineales , Masculino , Oportunidad Relativa , Factores de Transcripción/genética , Quinasa Activadora de Quinasas Ciclina-DependientesRESUMEN
Chromosomal aberrations (CAs) in human peripheral blood lymphocytes (PBL) measured with the conventional cytogenetic assay have been used for human biomonitoring of genotoxic exposure for decades. CA frequency in peripheral blood is a marker of cancer susceptibility. Previous studies have shown associations between genetic variants in metabolic pathway, DNA repair and major mitotic checkpoint genes and CAs. We conducted a genome-wide association study on 576 individuals from the Czech Republic and Slovakia followed by a replication in two different sample sets of 482 (replication 1) and 1288 (replication 2) samples. To have a broad look at the genetic susceptibility associated with CA frequency, the sample sets composed of individuals either differentially exposed to smoking, occupational/environmental hazards, or they were untreated cancer patients. Phenotypes were divided into chromosome- and chromatid-type aberrations (CSAs and CTAs, respectively) and total chromosomal aberrations (CAtot). The arbitrary cutoff point between individuals with high and low CA frequency was 2% for CAtot and 1% for CSA and CTA. The data were analyzed using age, sex, occupation/cancer and smoking history as covariates. Altogether 11 loci reached the P-value of 10-5 in the GWAS. Replication 1 supported the association of rs1383997 (8q13.3) and rs2824215 (21q21.1) in CAtot and rs983889 (5p15.1) in CTA analysis. These loci were found to be associated with genes involved in mitosis, response to environmental and chemical factors and genes involved in syndromes linked to chromosomal abnormalities. Identification of new genetic variants for the frequency of CAs offers prediction tools for cancer risk in future. Environ. Mol. Mutagen. 60:17-28, 2019. © 2018 Wiley Periodicals, Inc.