RESUMEN
Formamidinium lead triiodide (FAPbI3) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl2) has been used as an additive in FAPbI3. MDA2+ has been reported as incorporated into the perovskite lattice alongside Cl-. However, the precise function and role of MDA2+ remain uncertain. Here, we grow FAPbI3 single crystals from a solution containing MDACl2 (FAPbI3-M). We demonstrate that FAPbI3-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA2+ is not the direct cause of the enhanced material stability. Instead, MDA2+ degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI3 crystals grown from a solution containing HMTA (FAPbI3-H) replicate the enhanced α-phase stability of FAPbI3-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA+ is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H+). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H+ is selectively incorporated into the bulk of both FAPbI3-M and FAPbI3-H at â¼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.
RESUMEN
We investigate nontrivial surface effects on the optical properties of self-assembled crystalline GaN nanotubes grown on Si substrates. The excitonic emission is observed to redshift by â¼100 meV with respect to that of bulk GaN. We find that the conduction band edge is mainly dominated by surface atoms, and that a larger number of surface atoms for the tube is likely to increase the bandwidth, thus reducing the optical bandgap. The experimental findings can have important impacts in the understanding of the role of surfaces in nanostructured semiconductors with an enhanced surface/volume ratio.
Asunto(s)
Galio/química , Nanotubos/química , Luminiscencia , Modelos Moleculares , Nanotubos/ultraestructura , Semiconductores , Propiedades de SuperficieRESUMEN
We report the synthesis of four new cationic dipolar pushpull dyes, together with an evaluation of their photophysical and photobiological characteristics pertinent to imaging membranes by fluorescence and second harmonic generation (SHG). All four dyes consist of an N,N-diethylaniline electron-donor conjugated to a pyridinium electron-acceptor via a thiophene bridge, with either vinylene (CH=CH) or ethynylene (C≡C) linking groups, and with either singly-charged or doubly-charged pyridinium terminals. The absorption and fluorescence behavior of these dyes were compared to a commercially available fluorescent membrane stain, the styryl dye FM4-64. The hyperpolarizabilities of all dyes were compared using hyper-Rayleigh scattering at 800 nm. Cellular uptake, localization, toxicity and phototoxicity were evaluated using tissue cell cultures (HeLa, SK-OV-3 and MDA-231). Replacing the central alkene bridge of FM4-64 with a thiophene does not substantially change the absorption, fluorescence or hyperpolarizability, whereas changing the vinylene-links to ethynylenes shifts the absorption and fluorescence to shorter wavelengths, and reduces the hyperpolarizability by about a factor of two. SHG and fluorescence imaging experiments in live cells showed that the doubly-charged thiophene dyes localize in plasma membranes, and exhibit lower internalization rates compared to FM4-64, resulting in less signal from the cell cytosol. At a typical imaging concentration of 1 µM, the doubly-charged dyes showed no significant light or dark toxicity, whereas the singly-charged dyes are phototoxic even at 0.5 µM. The doubly-charged dyes showed phototoxicity at concentrations greater than 10 µM, although they do not generate singlet oxygen, indicating that the phototoxicity is type I rather than type II. The doubly-charged thiophene dyes are more effective than FM4-64 as SHG dyes for live cells.
Asunto(s)
Membrana Celular/química , Colorantes/química , Tiofenos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Dinámicas no Lineales , Fenómenos Ópticos , Espectrometría de Fluorescencia , Electricidad Estática , Liposomas Unilamelares/químicaRESUMEN
Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Power conversion efficiencies have experienced an unprecedented increase to reported values exceeding 19% within just four years. With the focus mainly on efficiency, the aspect of stability has so far not been thoroughly addressed. In this paper, we identify thermal stability as a fundamental weak point of perovskite solar cells, and demonstrate an elegant approach to mitigating thermal degradation by replacing the organic hole transport material with polymer-functionalized single-walled carbon nanotubes (SWNTs) embedded in an insulating polymer matrix. With this composite structure, we achieve JV scanned power-conversion efficiencies of up to 15.3% with an average efficiency of 10 ± 2%. Moreover, we observe strong retardation in thermal degradation as compared to cells employing state-of-the-art organic hole-transporting materials. In addition, the resistance to water ingress is remarkably enhanced. These are critical developments for achieving long-term stability of high-efficiency perovskite solar cells.
RESUMEN
Semiconducting carbon nanotubes (CNTs) provide an exceptional platform for studying one-dimensional excitons (bound electron-hole pairs), but the role of defects and quenching centers in controlling emission remains controversial. Here we show that, by wrapping the CNT in a polymer sheath and cooling to 4.2 K, ultranarrow photoluminescence (PL) emission line widths below 80 µeV can be seen from individual solution processed CNTs. Hyperspectral imaging of the tubes identifies local emission sites and shows that some previously dark quenching segments can be brightened by the application of high magnetic fields, and their effect on exciton transport and dynamics can be studied. Using focused high intensity laser irradiation, we introduce a single defect into an individual nanotube which reduces its quantum efficiency by the creation of a shallow bound exciton state with enhanced electron-hole exchange interaction. The emission intensity of the nanotube is then reactivated by the application of the high magnetic field.
RESUMEN
The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.
RESUMEN
Carbon nanomaterials are expected to be bright and efficient emitters, but structural disorder, intermolecular interactions and the intrinsic presence of dark states suppress their photoluminescence. Here, we study synthetically-made graphene nanoribbons with atomically precise edges and which are designed to suppress intermolecular interactions to demonstrate strong photoluminescence in both solutions and thin films. The resulting high spectral resolution reveals strong vibron-electron coupling from the radial-breathing-like mode of the ribbons. In addition, their cove-edge structure produces inter-valley mixing, which brightens conventionally-dark states to generate hitherto-unrecognised twilight states as predicted by theory. The coupling of these states to the nanoribbon phonon modes affects absorption and emission differently, suggesting a complex interaction with both Herzberg-Teller and Franck- Condon coupling present. Detailed understanding of the fundamental electronic processes governing the optical response will help the tailored chemical design of nanocarbon optical devices, via gap tuning and side-chain functionalisation.
RESUMEN
A scalable method to coat monochiral (7,5) semiconducting single-walled carbon nanotubes with a monolayer coating of a range of technologically useful polymers such as poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) is presented. Optical spectroscopy and atomic force microscopy measurements show that the semiconducting tube purity (>99%) obtained from the selective wrapping of nanotubes by polymers such as poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) can be transferred to these other nanotube-polymer combinations by polymer exchange.
RESUMEN
We have investigated the charge photogeneration dynamics at the interface formed between single-walled carbon nanotubes (SWNTs) and poly(3-hexylthiophene) (P3HT) using a combination of femtosecond spectroscopic techniques. We demonstrate that photoexcitation of P3HT forming a single molecular layer around a SWNT leads to an ultrafast (â¼430 fs) charge transfer between the materials. The addition of excess P3HT leads to long-term charge separation in which free polarons remain separated at room temperature. Our results suggest that SWNT-P3HT blends incorporating only small fractions (1%) of SWNTs allow photon-to-charge conversion with efficiencies comparable to those for conventional (60:40) P3HT-fullerene blends, provided that small-diameter tubes are individually embedded in the P3HT matrix.
RESUMEN
The limited long-term stability of metal halide perovskite-based solar cells is a bottleneck in their drive toward widespread commercial adaptation. The organic hole-transport materials (HTMs) have been implicated in the degradation, and metal oxide layers are proposed as alternatives. One of the most prominent metal oxide HTM in organic photovoltaics is MoO3. However, the use of MoO3 as HTM in metal halide perovskite-based devices causes a severe solar cell deterioration. Thus, the formation of the MoO3/CH3NH3PbI3-xClx (MAPbI3-xClx) heterojunction is systematically studied by synchrotron-based hard X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Upon MoO3 deposition, significant chemical interaction is induced at the MoO3/MAPbI3-xClx interface: substoichiometric molybdenum oxide is present, and the perovskite decomposes in the proximity of the interface, leading to accumulation of PbI2 on the MoO3 cover layer. Furthermore, we find evidence for the formation of new compounds such as PbMoO4, PbN2O2, and PbO as a result of the MAPbI3-xClx decomposition and suggest chemical reaction pathways to describe the underlying mechanism. These findings suggest that the (direct) MoO3/MAPbI3-xClx interface may be inherently unstable. It provides an explanation for the low power conversion efficiencies of metal halide perovskite solar cells that use MoO3 as a hole-transport material and in which there is a direct contact between MoO3 and perovskite.
RESUMEN
We report a study of the electronic properties of the heterojunction between regioregular poly(3-hexylthiophene) (rrP3HT) and single-walled carbon nanotubes (SWNTs). Comparison of the spectroscopic data of nanotube dispersions in a range of polymers indicates significant changes in the nature of the observed SWNT excitons only in combination with rrP3HT. A detailed analysis concludes that a type II heterojunction between rrP3HT and small diameter s-SWNTs is formed, making these particular nanohybrids a promising material for organic photovoltaics.
RESUMEN
Carbon nanotube (CNT) solubilization via non-covalent wrapping of conjugated semiconducting polymers is a common technique used to produce stable dispersions for depositing CNTs from solution. Here, we report the use of a non-conjugated insulating polymer, ethylene vinyl acetate (EVA), to disperse multi- and single-walled CNTs (MWCNT and SWCNT) in organic solvents. We demonstrate that despite the insulating nature of the EVA, we can produce semitransparent films with conductivities of up to 34 S/cm. We show, using photoluminescence spectroscopy, that the EVA strongly binds to individual CNTs, thus making them soluble, preventing aggregation, and facilitating the deposition of high-quality films. To prove the good electronic properties of this composite, we have fabricated perovskite solar cells using EVA/SWCNTs and EVA/MWCNTs as selective hole contact, obtaining power conversion efficiencies of up to 17.1%, demonstrating that the insulating polymer does not prevent the charge transfer from the active material to the CNTs.
RESUMEN
Combinations of different aromatic polymers and organic solvents have been studied as dispersing agents for preparing single-walled carbon nanotubes solutions, using optical absorbance, photoluminescence-excitation mapping, computer modeling, and electron microscopic imaging to characterize the solutions. Both the polymer structure and solvent used strongly influence the dispersion of the nanotubes, leading in some cases to very high selectivity in terms of diameter and chiral angle. The highest selectivities are observed using toluene with the rigid polymers PFO-BT and PFO to suspend isolated nanotubes. The specific nanotube species selected are also dependent on the solvent used and can be adjusted by the use of THF or xylene. Where the structure has more flexible conformations, the polymers are shown to be less selective but show an enhanced overall solubilization of nanotube material. When chloroform is used as the solvent, there is a large increase in the overall solubilization, but the nanotubes are suspended as bundles rather than as isolated tubes which leads to a quenching of their photoluminescence.
Asunto(s)
Cloroformo/química , Fluorocarburos/química , Furanos/química , Nanotubos de Carbono/química , Polímeros/química , Tiazoles/química , Tolueno/química , Xilenos/química , Simulación por Computador , Mediciones Luminiscentes/métodos , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión/métodos , Modelos Químicos , Óptica y Fotónica , Tamaño de la Partícula , Solventes/química , Espectrometría Raman/métodos , Propiedades de SuperficieRESUMEN
We have accurately determined the exciton binding energy and reduced mass of single crystals of methylammonium lead triiodide using magneto-reflectivity at very high magnetic fields. The single crystal has excellent optical properties with a narrow line width of â¼3 meV for the excitonic transitions and a 2s transition that is clearly visible even at zero magnetic field. The exciton binding energy of 16 ± 2 meV in the low-temperature orthorhombic phase is almost identical to the value found in polycrystalline samples, crucially ruling out any possibility that the exciton binding energy depends on the grain size. In the room-temperature tetragonal phase, an upper limit for the exciton binding energy of 12 ± 4 meV is estimated from the evolution of 1s-2s splitting at high magnetic field.
RESUMEN
Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.
RESUMEN
The extent to which the soft structural properties of metal halide perovskites affect their optoelectronic properties is unclear. X-ray diffraction and micro-photoluminescence measurements are used to show that there is a coexistence of both tetragonal and orthorhombic phases through the low-temperature phase transition, and that cycling through this transition can lead to structural changes and enhanced optoelectronic properties.
RESUMEN
Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states.
RESUMEN
A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step toward all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells, and also toward applications as optical devices.
RESUMEN
Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 µm min(-1)) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials.